Batch and Semi-Continuous Anaerobic Digestion of Industrial Solid Citrus Waste for the Production of Bioenergy

The aim of this paper is to describe a study of the anaerobic digestion of industrial citrus solid waste (ISCW) in both batch and semi-continuous modes for the production of bioenergy without the elimination of D-limonene. The study was conducted at the pilot plant level in an anaerobic reactor with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-04, Vol.9 (4), p.648
Hauptverfasser: Rosas-Mendoza, Erik Samuel, Alvarado-Vallejo, Andrea, Vallejo-Cantú, Norma Alejandra, Snell-Castro, Raúl, Martínez-Hernández, Sergio, Alvarado-Lassman, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to describe a study of the anaerobic digestion of industrial citrus solid waste (ISCW) in both batch and semi-continuous modes for the production of bioenergy without the elimination of D-limonene. The study was conducted at the pilot plant level in an anaerobic reactor with a working volume of 220 L under mesophilic conditions of 35 ± 2 °C. Cattle manure (CM) was used as the inoculum. Three batches were studied. The first batch had a CM/ISCW ratio of 90/10, and Batches 2 and 3 had CM/ISCW ratios of 80/20 and 70/30, respectively. In the semi-continuous mode an OLR of approximately 8 g total chemical oxygen demand (COD)/Ld (4.43 gVS/Ld) was used. The results showed that 49%, 44%, and 60% of volatile solids were removed in the batch mode, and 35% was removed in the semi-continuous mode. In the batch mode, 0.322, 0.382, and 0.316 LCH4 were obtained at STP/gVSremoved. A total of 24.4 L/d (34% methane) was measured in the semi-continuous mode. Bioenergy potentials of 3.97, 5.66, and 8.79 kWh were obtained for the respective batches, and 0.09 kWh was calculated in the semi-continuous mode. The citrus industry could produce 37 GWh per season. A ton of processed oranges has a bioenergy potential of 162 kWh, which is equivalent to 49 kWh of available electricity ($3.90).
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9040648