TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector
In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light condi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2021-06, Vol.68 (6), p.2841-2847 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2847 |
---|---|
container_issue | 6 |
container_start_page | 2841 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Kumari, Vandana Gupta, Mridula Saxena, Manoj |
description | In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light conditions. Effect of light intensity and wavelength has been modulated to optimize the device sensitivity. Higher shift in the drain current (in subthreshold region) has been observed at 0.35~\mu \text{m} of wavelength, i.e., more sensitive to ultraviolet (UV) light. The improved sensitivity of DG-JLT as compared to DG-MOSFET is due to the better subthreshold characteristics of the device (i.e., lower leakage current and subthreshold slope). From the results, it can be concluded that the DG-JLT with channel doping of 10 19 cm −3 , 10 nm of channel thickness, and having 1 nm of oxide thickness is the best possible choice for UV photodetector due to high sensitivity and responsivity. It has also been observed that more optimizing parameters are available with DG-JLT as the DG-MOSFET is immune toward the device parameter variation. |
doi_str_mv | 10.1109/TED.2021.3075654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2530114318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424973</ieee_id><sourcerecordid>2530114318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-583fc4e3b8a97d50d483c038c3b79227604e2c63aa3950c2cf8c68905dc2aa173</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUvA89Ykk-wmx9rWWlnQw9ZrSLNZ3VI3NdkV_PemtHgYhnm8NzN8CN1SMqGUqIdqMZ8wwugESCFywc_QiApRZCrn-TkaEUJlpkDCJbqKcZvGnHM2QlU1m86zRxNdjVfdj4t9-2H61nfYN3juh83O4aXpHX4ZOnvQSxcjroLpYht7H3CTav2O3z5972vXO5vEa3TRmF10N6c-RuunRTV7zsrX5Wo2LTPLFO0zIaGx3MFGGlXUgtRcgiUgLWwKxViRE-6YzcEYUIJYZhtpc6mIqC0zhhYwRvfHvfvgv4f0u976IXTppGYCCKUcqEwucnTZ4GMMrtH70H6Z8Ksp0Qd2OrHTB3b6xC5F7o6R1jn3b1eccVUA_AFKZGlR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530114318</pqid></control><display><type>article</type><title>TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector</title><source>IEEE Electronic Library (IEL)</source><creator>Kumari, Vandana ; Gupta, Mridula ; Saxena, Manoj</creator><creatorcontrib>Kumari, Vandana ; Gupta, Mridula ; Saxena, Manoj</creatorcontrib><description>In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light conditions. Effect of light intensity and wavelength has been modulated to optimize the device sensitivity. Higher shift in the drain current (in subthreshold region) has been observed at <inline-formula> <tex-math notation="LaTeX">0.35~\mu \text{m} </tex-math></inline-formula> of wavelength, i.e., more sensitive to ultraviolet (UV) light. The improved sensitivity of DG-JLT as compared to DG-MOSFET is due to the better subthreshold characteristics of the device (i.e., lower leakage current and subthreshold slope). From the results, it can be concluded that the DG-JLT with channel doping of 10 19 cm −3 , 10 nm of channel thickness, and having 1 nm of oxide thickness is the best possible choice for UV photodetector due to high sensitivity and responsivity. It has also been observed that more optimizing parameters are available with DG-JLT as the DG-MOSFET is immune toward the device parameter variation.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3075654</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>detector ; Doping ; II-VI semiconductor materials ; JunctionLess (JL) ; Leakage current ; Logic gates ; Luminous intensity ; MOSFETs ; optical ; Optimization ; Parameters ; Photodetectors ; Photometers ; Semiconductor devices ; Sensitivity ; Thickness ; Transistors ; ultraviolet ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2841-2847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-583fc4e3b8a97d50d483c038c3b79227604e2c63aa3950c2cf8c68905dc2aa173</citedby><cites>FETCH-LOGICAL-c291t-583fc4e3b8a97d50d483c038c3b79227604e2c63aa3950c2cf8c68905dc2aa173</cites><orcidid>0000-0002-9368-4194 ; 0000-0002-6994-6828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9424973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kumari, Vandana</creatorcontrib><creatorcontrib>Gupta, Mridula</creatorcontrib><creatorcontrib>Saxena, Manoj</creatorcontrib><title>TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light conditions. Effect of light intensity and wavelength has been modulated to optimize the device sensitivity. Higher shift in the drain current (in subthreshold region) has been observed at <inline-formula> <tex-math notation="LaTeX">0.35~\mu \text{m} </tex-math></inline-formula> of wavelength, i.e., more sensitive to ultraviolet (UV) light. The improved sensitivity of DG-JLT as compared to DG-MOSFET is due to the better subthreshold characteristics of the device (i.e., lower leakage current and subthreshold slope). From the results, it can be concluded that the DG-JLT with channel doping of 10 19 cm −3 , 10 nm of channel thickness, and having 1 nm of oxide thickness is the best possible choice for UV photodetector due to high sensitivity and responsivity. It has also been observed that more optimizing parameters are available with DG-JLT as the DG-MOSFET is immune toward the device parameter variation.</description><subject>detector</subject><subject>Doping</subject><subject>II-VI semiconductor materials</subject><subject>JunctionLess (JL)</subject><subject>Leakage current</subject><subject>Logic gates</subject><subject>Luminous intensity</subject><subject>MOSFETs</subject><subject>optical</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Photodetectors</subject><subject>Photometers</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Thickness</subject><subject>Transistors</subject><subject>ultraviolet</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wUvA89Ykk-wmx9rWWlnQw9ZrSLNZ3VI3NdkV_PemtHgYhnm8NzN8CN1SMqGUqIdqMZ8wwugESCFywc_QiApRZCrn-TkaEUJlpkDCJbqKcZvGnHM2QlU1m86zRxNdjVfdj4t9-2H61nfYN3juh83O4aXpHX4ZOnvQSxcjroLpYht7H3CTav2O3z5972vXO5vEa3TRmF10N6c-RuunRTV7zsrX5Wo2LTPLFO0zIaGx3MFGGlXUgtRcgiUgLWwKxViRE-6YzcEYUIJYZhtpc6mIqC0zhhYwRvfHvfvgv4f0u976IXTppGYCCKUcqEwucnTZ4GMMrtH70H6Z8Ksp0Qd2OrHTB3b6xC5F7o6R1jn3b1eccVUA_AFKZGlR</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kumari, Vandana</creator><creator>Gupta, Mridula</creator><creator>Saxena, Manoj</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9368-4194</orcidid><orcidid>https://orcid.org/0000-0002-6994-6828</orcidid></search><sort><creationdate>20210601</creationdate><title>TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector</title><author>Kumari, Vandana ; Gupta, Mridula ; Saxena, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-583fc4e3b8a97d50d483c038c3b79227604e2c63aa3950c2cf8c68905dc2aa173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>detector</topic><topic>Doping</topic><topic>II-VI semiconductor materials</topic><topic>JunctionLess (JL)</topic><topic>Leakage current</topic><topic>Logic gates</topic><topic>Luminous intensity</topic><topic>MOSFETs</topic><topic>optical</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Photodetectors</topic><topic>Photometers</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Thickness</topic><topic>Transistors</topic><topic>ultraviolet</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Vandana</creatorcontrib><creatorcontrib>Gupta, Mridula</creatorcontrib><creatorcontrib>Saxena, Manoj</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumari, Vandana</au><au>Gupta, Mridula</au><au>Saxena, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>68</volume><issue>6</issue><spage>2841</spage><epage>2847</epage><pages>2841-2847</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light conditions. Effect of light intensity and wavelength has been modulated to optimize the device sensitivity. Higher shift in the drain current (in subthreshold region) has been observed at <inline-formula> <tex-math notation="LaTeX">0.35~\mu \text{m} </tex-math></inline-formula> of wavelength, i.e., more sensitive to ultraviolet (UV) light. The improved sensitivity of DG-JLT as compared to DG-MOSFET is due to the better subthreshold characteristics of the device (i.e., lower leakage current and subthreshold slope). From the results, it can be concluded that the DG-JLT with channel doping of 10 19 cm −3 , 10 nm of channel thickness, and having 1 nm of oxide thickness is the best possible choice for UV photodetector due to high sensitivity and responsivity. It has also been observed that more optimizing parameters are available with DG-JLT as the DG-MOSFET is immune toward the device parameter variation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3075654</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9368-4194</orcidid><orcidid>https://orcid.org/0000-0002-6994-6828</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-06, Vol.68 (6), p.2841-2847 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2530114318 |
source | IEEE Electronic Library (IEL) |
subjects | detector Doping II-VI semiconductor materials JunctionLess (JL) Leakage current Logic gates Luminous intensity MOSFETs optical Optimization Parameters Photodetectors Photometers Semiconductor devices Sensitivity Thickness Transistors ultraviolet Zinc oxide |
title | TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TCAD-Based%20Investigation%20of%20Double%20Gate%20JunctionLess%20Transistor%20for%20UV%20Photodetector&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kumari,%20Vandana&rft.date=2021-06-01&rft.volume=68&rft.issue=6&rft.spage=2841&rft.epage=2847&rft.pages=2841-2847&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3075654&rft_dat=%3Cproquest_RIE%3E2530114318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530114318&rft_id=info:pmid/&rft_ieee_id=9424973&rfr_iscdi=true |