TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector

In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-06, Vol.68 (6), p.2841-2847
Hauptverfasser: Kumari, Vandana, Gupta, Mridula, Saxena, Manoj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, TCAD-based investigation of junctionLess (JL) architecture having double gate (DG) has been performed for visualizing the sensitivity of the device against light intensity. Comparison has been drawn between conventional DG MOSFET and DG-JL transistor (DG-JLT) under dark and light conditions. Effect of light intensity and wavelength has been modulated to optimize the device sensitivity. Higher shift in the drain current (in subthreshold region) has been observed at 0.35~\mu \text{m} of wavelength, i.e., more sensitive to ultraviolet (UV) light. The improved sensitivity of DG-JLT as compared to DG-MOSFET is due to the better subthreshold characteristics of the device (i.e., lower leakage current and subthreshold slope). From the results, it can be concluded that the DG-JLT with channel doping of 10 19 cm −3 , 10 nm of channel thickness, and having 1 nm of oxide thickness is the best possible choice for UV photodetector due to high sensitivity and responsivity. It has also been observed that more optimizing parameters are available with DG-JLT as the DG-MOSFET is immune toward the device parameter variation.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2021.3075654