Embedding Linear Codes Into Self-Orthogonal Codes and Their Optimal Minimum Distances
We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method to embed a given binary k -dimensional linear co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2021-06, Vol.67 (6), p.3701-3707 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method to embed a given binary k -dimensional linear code \mathcal {C} ( k = 3,4 ) into a self-orthogonal code of the shortest length which has the same dimension k and minimum distance d' \ge d(\mathcal {C}) . For k > 4 , we suggest a recursive method to embed a k -dimensional linear code to a self-orthogonal code. We also give new explicit formulas for the minimum distances of optimal self-orthogonal codes for any length n with dimension 4 and any length n \not \equiv 6 , 13,14,21,22,28,29 \pmod {31} with dimension 5. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2021.3066599 |