Are fire temperatures and residence times good predictors of survival and regrowth for resprouters in Florida, USA, scrub?
Background Fire is a dominant ecological disturbance in many ecosystems. Post-fire resprouting is a widespread response to fire, but resprouting vigor varies with many components of the fire regime, including fire intensity. We measured responses in 46 species of resprouting plants of Florida, USA,...
Gespeichert in:
Veröffentlicht in: | Fire ecology 2021-05, Vol.17 (1), Article 16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Fire is a dominant ecological disturbance in many ecosystems. Post-fire resprouting is a widespread response to fire, but resprouting vigor varies with many components of the fire regime, including fire intensity. We measured responses in 46 species of resprouting plants of Florida, USA, scrub and related habitats, marking and measuring individual plants before fires. We then measured fire temperatures and residence times (time above 60 °C) during 13 fires, at the base of each plant. We measured post-fire plant sizes for up to six years. We hypothesized that high temperatures and long residence times would reduce survival and growth, and that these vital rates would vary by burn season, habitat type, and species group.
Results
Fires had variable intensities with maximum temperatures ranging from 47 to 890 °C (mean temperature = 549 °C) and residence times ranging from 0 to 83 minutes (mean time = 10 minutes). Consumed plants experienced higher fire intensity than scorched plants, and residence times were higher during the wet season (July through October), than the dry season (November through April), and fire season (May to June) and with drier conditions. Across all species affected by fire, 86% of plants survived and resprouted post fire. First year survival was unrelated to fire variables, with high survival across all maximum temperatures and residence times. Burn season, habitat, and species group did not significantly affect survival. On average across all species, post-fire growth recovered to pre-fire heights within four years. Growth was not significantly affected by species group or burn season.
Conclusion
Resprouting perennial plants that dominate Florida scrub and surrounding habitats appear resilient to a wide range of fire intensities, as measured by maximum temperatures and residence times. Post-fire growth was rapid, with recovery of pre-fire heights in four years. Species groups varied in post-fire recovery rates. In these habitats, fire is critical to maintain the habitat structure for many animals and plants, including many rare species. The slower recovery of biomass for resprouting shrubs results in the longer availability of gaps for rare herbaceous species. In addition, variability in post-fire survival and growth among species groups likely contributes to the persistence of species diversity and complexity across habitats. However, variation in fire intensity appears to have little effect on resprouting species or subseq |
---|---|
ISSN: | 1933-9747 1933-9747 |
DOI: | 10.1186/s42408-021-00101-8 |