Stroke prediction from electrocardiograms by deep neural network

The brain is an energy-consuming organ that heavily relies on the heart for energy supply. Heart abnormalities detected by electrocardiogram (ECG) might provide diagnostic indicators for brain dysfunctions such as stroke. Diagnosis of brain diseases by ECG requires proficient domain knowledge, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-05, Vol.80 (11), p.17291-17297
Hauptverfasser: Xie, Yifeng, Yang, Hongnan, Yuan, Xi, He, Qian, Zhang, Ruitao, Zhu, Qianyun, Chu, Zhenhai, Yang, Chengming, Qin, Peiwu, Yan, Chenggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The brain is an energy-consuming organ that heavily relies on the heart for energy supply. Heart abnormalities detected by electrocardiogram (ECG) might provide diagnostic indicators for brain dysfunctions such as stroke. Diagnosis of brain diseases by ECG requires proficient domain knowledge, which is both time and labor consuming. Deep learning is capable of constructing a nonlinear correlation between ECG and stroke without prior expert knowledge. Here, we propose a data-driven classifier-Dense convolutional neural Network (DenseNet) for stroke prediction based on 12-leads ECG data. With our finely-tuned model, we obtain the training accuracy of 99.99% and the prediction accuracy of 85.82%. To our knowledge, this is the first report studying the correlation between stroke and ECG with the aid of deep learning. The results indicate that ECG is a valuable complementary technique for stroke diagnostics.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-020-10043-z