Posterior Regularization on Bayesian Hierarchical Mixture Clustering
Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce tre...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Huang, Weipeng Tin Lok James Ng Laitonjam, Nishma Hurley, Neil J |
description | Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2528651257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528651257</sourcerecordid><originalsourceid>FETCH-proquest_journals_25286512573</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_EPBcaDem7dmq9CKIeC-hxLolJLpJQP16i_gBwoM5zLwZS0CIIqs3AAuWej_meQ5lBVKKhO1OzgdN6Iif9RCNInyrgM7yaVv10h6V5S1qUtTfsFeGH_EZImnemPi92mHF5ldlvE5_XLL1YX9p2uxO7hG1D93oItlJdSChLmUBshL_VR-ciTtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528651257</pqid></control><display><type>article</type><title>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</title><source>Free E- Journals</source><creator>Huang, Weipeng ; Tin Lok James Ng ; Laitonjam, Nishma ; Hurley, Neil J</creator><creatorcontrib>Huang, Weipeng ; Tin Lok James Ng ; Laitonjam, Nishma ; Hurley, Neil J</creatorcontrib><description>Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Clustering ; Constraint modelling ; Regularization</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Huang, Weipeng</creatorcontrib><creatorcontrib>Tin Lok James Ng</creatorcontrib><creatorcontrib>Laitonjam, Nishma</creatorcontrib><creatorcontrib>Hurley, Neil J</creatorcontrib><title>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</title><title>arXiv.org</title><description>Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.</description><subject>Bayesian analysis</subject><subject>Clustering</subject><subject>Constraint modelling</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_EPBcaDem7dmq9CKIeC-hxLolJLpJQP16i_gBwoM5zLwZS0CIIqs3AAuWej_meQ5lBVKKhO1OzgdN6Iif9RCNInyrgM7yaVv10h6V5S1qUtTfsFeGH_EZImnemPi92mHF5ldlvE5_XLL1YX9p2uxO7hG1D93oItlJdSChLmUBshL_VR-ciTtM</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>Huang, Weipeng</creator><creator>Tin Lok James Ng</creator><creator>Laitonjam, Nishma</creator><creator>Hurley, Neil J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230505</creationdate><title>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</title><author>Huang, Weipeng ; Tin Lok James Ng ; Laitonjam, Nishma ; Hurley, Neil J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25286512573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Clustering</topic><topic>Constraint modelling</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weipeng</creatorcontrib><creatorcontrib>Tin Lok James Ng</creatorcontrib><creatorcontrib>Laitonjam, Nishma</creatorcontrib><creatorcontrib>Hurley, Neil J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Weipeng</au><au>Tin Lok James Ng</au><au>Laitonjam, Nishma</au><au>Hurley, Neil J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</atitle><jtitle>arXiv.org</jtitle><date>2023-05-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2528651257 |
source | Free E- Journals |
subjects | Bayesian analysis Clustering Constraint modelling Regularization |
title | Posterior Regularization on Bayesian Hierarchical Mixture Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Posterior%20Regularization%20on%20Bayesian%20Hierarchical%20Mixture%20Clustering&rft.jtitle=arXiv.org&rft.au=Huang,%20Weipeng&rft.date=2023-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2528651257%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528651257&rft_id=info:pmid/&rfr_iscdi=true |