Posterior Regularization on Bayesian Hierarchical Mixture Clustering

Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Huang, Weipeng, Tin Lok James Ng, Laitonjam, Nishma, Hurley, Neil J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Weipeng
Tin Lok James Ng
Laitonjam, Nishma
Hurley, Neil J
description Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2528651257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528651257</sourcerecordid><originalsourceid>FETCH-proquest_journals_25286512573</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_EPBcaDem7dmq9CKIeC-hxLolJLpJQP16i_gBwoM5zLwZS0CIIqs3AAuWej_meQ5lBVKKhO1OzgdN6Iif9RCNInyrgM7yaVv10h6V5S1qUtTfsFeGH_EZImnemPi92mHF5ldlvE5_XLL1YX9p2uxO7hG1D93oItlJdSChLmUBshL_VR-ciTtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528651257</pqid></control><display><type>article</type><title>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</title><source>Free E- Journals</source><creator>Huang, Weipeng ; Tin Lok James Ng ; Laitonjam, Nishma ; Hurley, Neil J</creator><creatorcontrib>Huang, Weipeng ; Tin Lok James Ng ; Laitonjam, Nishma ; Hurley, Neil J</creatorcontrib><description>Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Clustering ; Constraint modelling ; Regularization</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Huang, Weipeng</creatorcontrib><creatorcontrib>Tin Lok James Ng</creatorcontrib><creatorcontrib>Laitonjam, Nishma</creatorcontrib><creatorcontrib>Hurley, Neil J</creatorcontrib><title>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</title><title>arXiv.org</title><description>Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.</description><subject>Bayesian analysis</subject><subject>Clustering</subject><subject>Constraint modelling</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_EPBcaDem7dmq9CKIeC-hxLolJLpJQP16i_gBwoM5zLwZS0CIIqs3AAuWej_meQ5lBVKKhO1OzgdN6Iif9RCNInyrgM7yaVv10h6V5S1qUtTfsFeGH_EZImnemPi92mHF5ldlvE5_XLL1YX9p2uxO7hG1D93oItlJdSChLmUBshL_VR-ciTtM</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>Huang, Weipeng</creator><creator>Tin Lok James Ng</creator><creator>Laitonjam, Nishma</creator><creator>Hurley, Neil J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230505</creationdate><title>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</title><author>Huang, Weipeng ; Tin Lok James Ng ; Laitonjam, Nishma ; Hurley, Neil J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25286512573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Clustering</topic><topic>Constraint modelling</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weipeng</creatorcontrib><creatorcontrib>Tin Lok James Ng</creatorcontrib><creatorcontrib>Laitonjam, Nishma</creatorcontrib><creatorcontrib>Hurley, Neil J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Weipeng</au><au>Tin Lok James Ng</au><au>Laitonjam, Nishma</au><au>Hurley, Neil J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Posterior Regularization on Bayesian Hierarchical Mixture Clustering</atitle><jtitle>arXiv.org</jtitle><date>2023-05-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2528651257
source Free E- Journals
subjects Bayesian analysis
Clustering
Constraint modelling
Regularization
title Posterior Regularization on Bayesian Hierarchical Mixture Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Posterior%20Regularization%20on%20Bayesian%20Hierarchical%20Mixture%20Clustering&rft.jtitle=arXiv.org&rft.au=Huang,%20Weipeng&rft.date=2023-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2528651257%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528651257&rft_id=info:pmid/&rfr_iscdi=true