Posterior Regularization on Bayesian Hierarchical Mixture Clustering

Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Huang, Weipeng, Tin Lok James Ng, Laitonjam, Nishma, Hurley, Neil J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian hierarchical mixture clustering (BHMC) improves traditionalBayesian hierarchical clustering by replacing conventional Gaussian-to-Gaussian kernels with a Hierarchical Dirichlet Process Mixture Model(HDPMM) for parent-to-child diffusion in the generative process. However,BHMC may produce trees with high nodal variance, indicating weak separation between nodes at higher levels. To address this issue, we employ Posterior Regularization, which imposes max-margin constraints on nodes at every level to enhance cluster separation. We illustrate how to apply PR toBHMC and demonstrate its effectiveness in improving the BHMC model.
ISSN:2331-8422