DOC3-Deep One Class Classification using Contradictions
This paper introduces the notion of learning from contradictions (a.k.a Universum learning) for deep one class classification problems. We formalize this notion for the widely adopted one class large-margin loss, and propose the Deep One Class Classification using Contradictions (DOC3) algorithm. We...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces the notion of learning from contradictions (a.k.a Universum learning) for deep one class classification problems. We formalize this notion for the widely adopted one class large-margin loss, and propose the Deep One Class Classification using Contradictions (DOC3) algorithm. We show that learning from contradictions incurs lower generalization error by comparing the Empirical Rademacher Complexity (ERC) of DOC3 against its traditional inductive learning counterpart. Our empirical results demonstrate the efficacy of DOC3 compared to popular baseline algorithms on several real-life data sets. |
---|---|
ISSN: | 2331-8422 |