Optimization of clamping for thin-walled rotational conical aluminum alloy with large diameter: modal simulation and experimental verification

Aluminum alloy is applied in aerospace widely and prominently due to its advantages in physical and mechanical properties. The clamp method for thin-walled aluminum alloy workpiece remains an important challenge in processing field. This paper presents an optimized clamp method for thin-walled alumi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-06, Vol.114 (7-8), p.2387-2396
Hauptverfasser: Wang, Liang, Qiao, Fan, Li, Yajun, Wang, Weifeng, Hua, Yinsong, Zhang, You, Liu, Xiao, Liu, Kuan, Bai, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminum alloy is applied in aerospace widely and prominently due to its advantages in physical and mechanical properties. The clamp method for thin-walled aluminum alloy workpiece remains an important challenge in processing field. This paper presents an optimized clamp method for thin-walled aluminum alloy rotational conical with large diameter during processing to ensure the wall thickness of the parts in various regions. Based on ANSYS, the vibration modal analysis model and the simplified cutting model are established respectively, for studying the modality and machining distortion. The influences of three clamping conditions on the most sensitive area of parts are compared. Base on the simulation analysis, the verified machining experiments of three different clamp methods are conducted. As the study subjects, the dimensional precision of wall thickness and the weight of parts are analyzed. The results show that the optimized contour support clamping condition can effectively guarantee the quality and precision of parts’ processing.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-021-07010-9