Extreme r-process Enhanced Stars at High Metallicity in Fornax
We present and discuss three extremely r-process enhanced stars located in the massive dwarf spheroidal galaxy Fornax. These stars are very unique with an extreme Eu enrichment (1.25 ≤ [Eu/Fe]≤1.45) at high metallicities (−1.3 ≤ [Fe/H]≤−0.8). They have the largest Eu abundances ever observed in a dw...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-05, Vol.912 (2), p.157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present and discuss three extremely r-process enhanced stars located in the massive dwarf spheroidal galaxy Fornax. These stars are very unique with an extreme Eu enrichment (1.25 ≤ [Eu/Fe]≤1.45) at high metallicities (−1.3 ≤ [Fe/H]≤−0.8). They have the largest Eu abundances ever observed in a dwarf galaxy opening new opportunities to further understand the origin of heavy elements formed by the r-process. We derive stellar abundances of Co, Zr, La, Ce, Pr, Nd, Er, and Lu using one-dimensional, local thermodynamic equilibrium codes and model atmospheres in conjunction with state-of-the art yield predictions. We derive Zr in the largest sample of stars (105) known to date in a dwarf galaxy. Accurate stellar abundances combined with a careful assessment of the yield predictions have revealed three metal-rich stars in Fornax showing a pure r-process pattern. We define a new class of stars, namely, Eu-stars, as r-II stars (i.e., [Eu/Fe] > 1) at high metallicities (i.e., [Fe/H] ≳ −1.5). The stellar abundance pattern contains Lu, observed for the first time in a dwarf galaxy, and reveals that a late burst of star formation has facilitated extreme r-process enhancement late in the galaxy’s history ( |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/abefd8 |