On I<q- and I≤q-convergence of arithmetic functions
Let N be the set of positive integers, and denote by λ ( A ) = inf { t > 0 : ∑ a ∈ A a - t < ∞ } the convergence exponent of A ⊂ N . For 0 < q ≤ 1 , 0 ≤ q ≤ 1 , respectively, the admissible ideals I < q , I ≤ q of all subsets A ⊂ N with λ ( A ) < q , λ ( A ) ≤ q , respectively, satisf...
Gespeichert in:
Veröffentlicht in: | Periodica mathematica Hungarica 2021-06, Vol.82 (2), p.125-135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
N
be the set of positive integers, and denote by
λ
(
A
)
=
inf
{
t
>
0
:
∑
a
∈
A
a
-
t
<
∞
}
the convergence exponent of
A
⊂
N
. For
0
<
q
≤
1
,
0
≤
q
≤
1
, respectively, the admissible ideals
I
<
q
,
I
≤
q
of all subsets
A
⊂
N
with
λ
(
A
)
<
q
,
λ
(
A
)
≤
q
, respectively, satisfy
I
<
q
⊊
I
c
(
q
)
⊊
I
≤
q
, where
I
c
(
q
)
=
{
A
⊂
N
:
∑
a
∈
A
a
-
q
<
∞
}
.
In this note we sharpen the results of Baláž et al. from (J Number Theory 183:74–83, 2018) and other papers, concerning characterizations of
I
c
(
q
)
-convergence of various arithmetic functions in terms of
q
. This is achieved by utilizing
I
<
q
- and
I
≤
q
-convergence, for which new methods and criteria are developed. |
---|---|
ISSN: | 0031-5303 1588-2829 |
DOI: | 10.1007/s10998-020-00345-y |