Curing Behavior of Waterborne Paint Containing Catalyst Encapsulated in Micelle
This research has studied the feasibility of fabricating a catalyst that activates at 80 °C to ensure the curing performance of two-pack isocyanate curable paints, while remaining inactive at 40 °C to ensure storage stability and pot life. The research examined whether the added dibutyl tin dilaurat...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2021-04, Vol.11 (4), p.375 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research has studied the feasibility of fabricating a catalyst that activates at 80 °C to ensure the curing performance of two-pack isocyanate curable paints, while remaining inactive at 40 °C to ensure storage stability and pot life. The research examined whether the added dibutyl tin dilaurate (DBTL) provided a catalytic function for curing the waterborne paint, which remains almost inactive at 40 °C and activates at 80 °C or higher. It was confirmed that the use of a non-ionic surfactant with a hydrophilic-lipophilic-balance (HLB) of between 13 and 14 resulted in rapid curing at a temperature of 80 °C or higher, thereby demonstrating catalytic properties. The results also show that the viscosity of the paint remained virtually unchanged after exposure for 1 h at 40 °C. This wass presumed to be the result of the DBTL, which was constrained by the micelles up to a temperature of 70 °C, breaking down the micelles at a temperature of 80 °C or higher. It was also confirmed that the catalytic switching properties were not obtained at a lower or higher HLB. It was found that selecting the non-ionic surfactant by HLB can control the activating temperature of the catalytic properties. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings11040375 |