Three- and four-site models for heavy water: SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW

Heavy water or deuterium oxide, D2O, is used as a solvent in various biophysical and chemical experiments. To model such experiments with molecular dynamics simulations, effective pair potentials for heavy water are required, which reproduce the well-known physicochemical differences relative to lig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-05, Vol.154 (19), p.194501-194501
Hauptverfasser: Linse, Johanna-Barbara, Hub, Jochen S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy water or deuterium oxide, D2O, is used as a solvent in various biophysical and chemical experiments. To model such experiments with molecular dynamics simulations, effective pair potentials for heavy water are required, which reproduce the well-known physicochemical differences relative to light water. We present three effective pair potentials for heavy water, denoted SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW. The models were parameterized by modifying the widely used three- and four-site models for light water, with the aim of maintaining the specific characteristics of the light water models. At room temperature, SPC/E-HW and TIP3P-HW capture the modulations relative to light water of the mass and electron densities, heat of vaporization, diffusion coefficient, and water structure. TIP4P/2005-HW captures, in addition, the density of heavy water over a wide temperature range.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0050841