Statistical Analysis of the Effectiveness of Wearable Robot
In this paper, we present a new statistical approach for evaluating the time-dependent effectiveness of wearable robots without real work. In total, 10 subjects participated in three phases of the experiment; not equipped with a wearable robot without any load, not equipped with the wearable robot w...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-05, Vol.10 (9), p.1006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a new statistical approach for evaluating the time-dependent effectiveness of wearable robots without real work. In total, 10 subjects participated in three phases of the experiment; not equipped with a wearable robot without any load, not equipped with the wearable robot with a 15 kg load, equipped with the wearable robot with a 15 kg load. A higher limb wearable robot called LEXO-W was utilized. We measured the time taken to complete a 10 m round trip 10 times as a lap time, and each participant was measured multiple times under all conditions. An increasing number of round trips causes an increment in lap times. In particular, the load-carrying group showed a rapid upward trend in lap time over the number of round trips. However, the robot-assisted group showed a slightly upward trend of lap time over the number of round trips. This study statistically shows that the LEXO-W helps reduce physical fatigue by using repeated measure ANOVA analysis. Furthermore, we employed the generalized additive model(GAM) model to predict and evaluate the effectiveness of the wearable robot. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10091006 |