Novel Automated K-means++ Algorithm for Financial Data Sets

The K-means algorithm has been extensively investigated in the field of text clustering because of its linear time complexity and adaptation to sparse matrix data. However, it has two main problems, namely, the determination of the number of clusters and the location of the initial cluster centres....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-12
Hauptverfasser: Du, Guoyu, Li, Xuehua, Zhang, Lanjie, Liu, Libo, Zhao, Chaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The K-means algorithm has been extensively investigated in the field of text clustering because of its linear time complexity and adaptation to sparse matrix data. However, it has two main problems, namely, the determination of the number of clusters and the location of the initial cluster centres. In this study, we propose an improved K-means++ algorithm based on the Davies-Bouldin index (DBI) and the largest sum of distance called the SDK-means++ algorithm. Firstly, we use the term frequency-inverse document frequency to represent the data set. Secondly, we measure the distance between objects by cosine similarity. Thirdly, the initial cluster centres are selected by comparing the distance to existing initial cluster centres and the maximum density. Fourthly, clustering results are obtained using the K-means++ method. Lastly, DBI is used to obtain optimal clustering results automatically. Experimental results on real bank transaction volume data sets show that the SDK-means++ algorithm is more effective and efficient than two other algorithms in organising large financial text data sets. The F-measure value of the proposed algorithm is 0.97. The running time of the SDK-means++ algorithm is reduced by 42.9% and 22.4% compared with that for K-means and K-means++ algorithms, respectively.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/5521119