Antibacterial Effects of Green-Synthesized Silver Nanoparticles Using Ferula asafoetida against Acinetobacter baumannii Isolated from the Hospital Environment and Assessment of Their Cytotoxicity on the Human Cell Lines

Acinetobacter baumannii (A. baumannii) is a dangerous nosocomial pathogen in intensive care units, causing fatal clinical challenges and mortality. In this study, the green synthesis of silver nanoparticles (AgNPs) using the extract of Ferula asafetida and the chemical synthesis of AgNPs were carrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2021, Vol.2021, p.1-12
Hauptverfasser: Abootalebi, Seyedeh Narjes, Mousavi, Seyyed Mojtaba, Hashemi, Seyyed Alireza, Shorafa, Eslam, Omidifar, Navid, Gholami, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acinetobacter baumannii (A. baumannii) is a dangerous nosocomial pathogen in intensive care units, causing fatal clinical challenges and mortality. In this study, the green synthesis of silver nanoparticles (AgNPs) using the extract of Ferula asafetida and the chemical synthesis of AgNPs were carried out to evaluate their effects on A. baumannii bacterial strain and a human adenocarcinoma cell line. The NPs were characterized using several techniques, including field emission-scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, UV-visible spectroscopy, and Fourier-transform infrared spectroscopy. After synthesis, the arrangement of AgNPs was confirmed based on the maximum absorption peak at 450 nm. The results showed that the AgNPs had a hexagonal structure. The antimicrobial activity of biogenic NPs significantly increased and reached a minimum inhibitory concentration of 2 μg/mL. The nanomaterials did not exhibit any toxic effects on the human cell line at certain concentrations and showed improvements compared to chemically synthesized AgNPs. However, at higher concentrations (100 μg/mL), the cytotoxicity increased. Finally, it was concluded that biosynthesized AgNPs had significant antimicrobial effects on A. baumannii isolated from intensive care units.
ISSN:1687-4110
1687-4129
DOI:10.1155/2021/6676555