L2 Properties of Lévy Generators on Compact Riemannian Manifolds

We consider isotropic Lévy processes on a compact Riemannian manifold, obtained from an R d -valued Lévy process through rolling without slipping. We prove that the Feller semigroups associated with these processes extend to strongly continuous contraction semigroups on L p , for 1 ≤ p < ∞ . When...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021, Vol.34 (2), p.1029-1042
Hauptverfasser: Applebaum, David, Brockway, Rosemary Shewell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider isotropic Lévy processes on a compact Riemannian manifold, obtained from an R d -valued Lévy process through rolling without slipping. We prove that the Feller semigroups associated with these processes extend to strongly continuous contraction semigroups on L p , for 1 ≤ p < ∞ . When p = 2 , we show that these semigroups are self-adjoint. If, in addition, the motion has a non-trivial Brownian part, we prove that the generator has a discrete spectrum of eigenvalues and that the semigroup is trace-class.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-019-00980-3