L2 Properties of Lévy Generators on Compact Riemannian Manifolds
We consider isotropic Lévy processes on a compact Riemannian manifold, obtained from an R d -valued Lévy process through rolling without slipping. We prove that the Feller semigroups associated with these processes extend to strongly continuous contraction semigroups on L p , for 1 ≤ p < ∞ . When...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2021, Vol.34 (2), p.1029-1042 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider isotropic Lévy processes on a compact Riemannian manifold, obtained from an
R
d
-valued Lévy process through rolling without slipping. We prove that the Feller semigroups associated with these processes extend to strongly continuous contraction semigroups on
L
p
, for
1
≤
p
<
∞
. When
p
=
2
, we show that these semigroups are self-adjoint. If, in addition, the motion has a non-trivial Brownian part, we prove that the generator has a discrete spectrum of eigenvalues and that the semigroup is trace-class. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-019-00980-3 |