Design and application of hydro-mechanical coupling test system for simulating rock masses in high dam reservoir operations

A meter-level direct shear test system and a true triaxial test system were designed by placing the traditional test apparatus into sealed cabins subjected to high water pressure. The influences of three-dimensional seepage water pressure on the shear and compression deformation of rock mass in Xilu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2021-04, Vol.140, p.104638, Article 104638
Hauptverfasser: Wu, Aiqing, Fan, Lei, Fu, Xiang, Zhang, Yihu, Zhong, Zuowu, Yu, Meiwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A meter-level direct shear test system and a true triaxial test system were designed by placing the traditional test apparatus into sealed cabins subjected to high water pressure. The influences of three-dimensional seepage water pressure on the shear and compression deformation of rock mass in Xiluodu Hydropower Station were studied. The test results showed that the changes in water pressure caused obvious shear deformation of the interlayer dislocation zone and tensile deformation and reduction in the triaxial compression strength of the fractured rock mass. The effect of water pressure on shear displacement and tensile displacement had a hysteresis effect. This was consistent with deformation data collected through field monitoring. The deformation mechanism in the reservoir valley was the coupling of the stress and seepage fields caused by reservoir impoundment. The effective stress was reduced, the mechanical parameters were weakened, and the change of the initial stress field led to the slightly overall shear slip and tensile deformation of the bank slope.
ISSN:1365-1609
1873-4545
DOI:10.1016/j.ijrmms.2021.104638