Rigorous Asymptotics of a KdV Soliton Gas

We analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit N → + ∞ of a gas of N -solitons. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-06, Vol.384 (2), p.733-784
Hauptverfasser: Girotti, M., Grava, T., Jenkins, R., McLaughlin, K. D. T.-R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit N → + ∞ of a gas of N -solitons. We show that this gas of solitons in the limit N → ∞ is slowly approaching a cnoidal wave solution for x → - ∞ up to terms of order O ( 1 / x ) , while approaching zero exponentially fast for x → + ∞ . We establish an asymptotic description of the gas of solitons for large times that is valid over the entire spatial domain, in terms of Jacobi elliptic functions.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-021-03942-1