Rigorous Asymptotics of a KdV Soliton Gas
We analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit N → + ∞ of a gas of N -solitons. We...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-06, Vol.384 (2), p.733-784 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analytically study the long time and large space asymptotics of a new broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we show arises as the limit
N
→
+
∞
of a gas of
N
-solitons. We show that this gas of solitons in the limit
N
→
∞
is slowly approaching a cnoidal wave solution for
x
→
-
∞
up to terms of order
O
(
1
/
x
)
, while approaching zero exponentially fast for
x
→
+
∞
. We establish an asymptotic description of the gas of solitons for large times that is valid over the entire spatial domain, in terms of Jacobi elliptic functions. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-021-03942-1 |