Computational and experimental investigation on mechanical behavior of zirconia toughened alumina and nickel powder reinforced EN31 based composite material
In the present investigation, EN31 steel alloy based composite material has been developed using zirconia toughened alumina as primary reinforcement material and Ni powder as secondary reinforcement material. The weight percent of zirconia toughened alumina varied from 1.25 % to 10 %. While Ni powde...
Gespeichert in:
Veröffentlicht in: | Materialwissenschaft und Werkstofftechnik 2021-05, Vol.52 (5), p.548-560 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present investigation, EN31 steel alloy based composite material has been developed using zirconia toughened alumina as primary reinforcement material and Ni powder as secondary reinforcement material. The weight percent of zirconia toughened alumina varied from 1.25 % to 10 %. While Ni powder weight percent has been kept uniform (2.5 %). The microstructure of the composite material developed showed uniform distribution of reinforcement particles. Results showed that wettability of zirconia toughened alumina particles improved by adding the nickel particles in EN31 steel alloy. Tensile strength and hardness after the heat treatment were found to be 899 MPa and 120.12 BHN respectively for EN31/6.25 wt.% zirconia toughened alumina/2.5 wt.% nickel composite material. Results showed that tensile strength and hardness of EN31 steel alloy improved about 46.17 % and 100.20 % respectively after adding 6.25 % zirconia toughened alumina and 2.5 % nickel powder. However, ductility reduced by adding the zirconia toughened alumina and nickel powder in EN31 steel alloy. The Finite element analysis has also been carried out to predict the deformation and damage behavior of investigated material during tensile test process. In addition, Brinell hardness test process finite element analysis model is also developed. The finite element analysis results are in good agreement with experimental results with 5 % of percentage difference.
The present study is focused on the development of EN31 alloy steel‐based composite material reinforced with zirconia toughened alumina and nickel powder with different weight percentage. Further, mechanical and microstructural properties have been investigated for the developed composite material. Also, finite element models have been developed for the tensile and hardness processes. |
---|---|
ISSN: | 0933-5137 1521-4052 |
DOI: | 10.1002/mawe.202000152 |