Equilibrium in misspecified Markov decision processes

We provide an equilibrium framework for modeling the behavior of an agent who holds a simplified view of a dynamic optimization problem. The agent faces a Markov Decision Process, where a transition probability function determines the evolution of a state variable as a function of the previous state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical economics 2021-05, Vol.16 (2), p.717-757
Hauptverfasser: Esponda, Ignacio, Pouzo, Demian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an equilibrium framework for modeling the behavior of an agent who holds a simplified view of a dynamic optimization problem. The agent faces a Markov Decision Process, where a transition probability function determines the evolution of a state variable as a function of the previous state and the agent's action. The agent is uncertain about the true transition function and has a prior over a set of possible transition functions; this set reflects the agent's (possibly simplified) view of her environment and may not contain the true function. We define an equilibrium concept and provide conditions under which it characterizes steady-state behavior when the agent updates her beliefs using Bayes' rule.
ISSN:1555-7561
1933-6837
1555-7561
DOI:10.3982/TE3843