Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability

Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2021-08, Vol.36 (8), p.8565-8569
Hauptverfasser: Xiao, Ming, Wang, Boyan, Liu, Jingcun, Zhang, Ruizhe, Zhang, Zichen, Ding, Chao, Lu, Shengchang, Sasaki, Kohei, Lu, Guo-Quan, Buttay, Cyril, Zhang, Yuhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8569
container_issue 8
container_start_page 8565
container_title IEEE transactions on power electronics
container_volume 36
creator Xiao, Ming
Wang, Boyan
Liu, Jingcun
Zhang, Ruizhe
Zhang, Zichen
Ding, Chao
Lu, Shengchang
Sasaki, Kohei
Lu, Guo-Quan
Buttay, Cyril
Zhang, Yuhao
description Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.
doi_str_mv 10.1109/TPEL.2021.3049966
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2525838216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316993</ieee_id><sourcerecordid>2525838216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-c1c02f646c2249d7b8f829ebda71669178c7f55d06c2a50c3c7da2b259baf7f23</originalsourceid><addsrcrecordid>eNo90FFLwzAUBeAgCs7pDxBfAj750JmbNGnyOMrclEKHm_hY0jTdss11pulg_97KxKcLh4_D4SJ0D2QEQNTzcj7JRpRQGDESKyXEBRqAiiEiQJJLNCBS8kgqxa7RTdtuCIGYExigt7k2W72yFZ5qmjO8MOsmhO0Jv1sTXO2sb_GnC2ucH63HgkRjvOj8yuK0897uA071QZdu58LpFl3Vetfau787RB8vk2U6i7J8-pqOs8hQLkNkwBBai1gYSmNVJaWsJVW2rHQCQihIpElqzivSA82JYSapNC0pV6Wuk5qyIXo69671rjh496X9qWi0K2bjrPjNCAMpOMARevt4tgfffHe2DcWm6fy-n1dQ3s9hkoLo1cNZOWvtf6ViIPqHsR90TmQV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525838216</pqid></control><display><type>article</type><title>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Ming ; Wang, Boyan ; Liu, Jingcun ; Zhang, Ruizhe ; Zhang, Zichen ; Ding, Chao ; Lu, Shengchang ; Sasaki, Kohei ; Lu, Guo-Quan ; Buttay, Cyril ; Zhang, Yuhao</creator><creatorcontrib>Xiao, Ming ; Wang, Boyan ; Liu, Jingcun ; Zhang, Ruizhe ; Zhang, Zichen ; Ding, Chao ; Lu, Shengchang ; Sasaki, Kohei ; Lu, Guo-Quan ; Buttay, Cyril ; Zhang, Yuhao</creatorcontrib><description>Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3049966</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[Cooling ; Electric power ; Electrical surges ; Electronic devices ; Electronic packaging thermal management ; Electronics ; Engineering Sciences ; Gallium ; Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>) ; Gallium oxides ; Heating systems ; package ; Packaging ; Ruggedness ; Schottky diodes ; simulation ; surge current ; Surges ; Temperature dependence ; Thermal conductivity ; Thermal management ; Thermal runaway ; Thermal stability ; Transient analysis ; ultrawide bandgap (UWBG)]]></subject><ispartof>IEEE transactions on power electronics, 2021-08, Vol.36 (8), p.8565-8569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-c1c02f646c2249d7b8f829ebda71669178c7f55d06c2a50c3c7da2b259baf7f23</citedby><orcidid>0000-0001-9072-6371 ; 0000-0002-6937-7653 ; 0000-0002-6155-1450 ; 0000-0001-9986-835X ; 0000-0003-3079-8589 ; 0000-0001-6350-4861 ; 0000-0002-8923-7703 ; 0000-0001-7140-5804 ; 0000-0003-0052-5408 ; 0000-0001-7639-274X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03186511$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Liu, Jingcun</creatorcontrib><creatorcontrib>Zhang, Ruizhe</creatorcontrib><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Buttay, Cyril</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><title>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.</description><subject>Cooling</subject><subject>Electric power</subject><subject>Electrical surges</subject><subject>Electronic devices</subject><subject>Electronic packaging thermal management</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Gallium</subject><subject><![CDATA[Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>)]]></subject><subject>Gallium oxides</subject><subject>Heating systems</subject><subject>package</subject><subject>Packaging</subject><subject>Ruggedness</subject><subject>Schottky diodes</subject><subject>simulation</subject><subject>surge current</subject><subject>Surges</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Thermal runaway</subject><subject>Thermal stability</subject><subject>Transient analysis</subject><subject>ultrawide bandgap (UWBG)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo90FFLwzAUBeAgCs7pDxBfAj750JmbNGnyOMrclEKHm_hY0jTdss11pulg_97KxKcLh4_D4SJ0D2QEQNTzcj7JRpRQGDESKyXEBRqAiiEiQJJLNCBS8kgqxa7RTdtuCIGYExigt7k2W72yFZ5qmjO8MOsmhO0Jv1sTXO2sb_GnC2ucH63HgkRjvOj8yuK0897uA071QZdu58LpFl3Vetfau787RB8vk2U6i7J8-pqOs8hQLkNkwBBai1gYSmNVJaWsJVW2rHQCQihIpElqzivSA82JYSapNC0pV6Wuk5qyIXo69671rjh496X9qWi0K2bjrPjNCAMpOMARevt4tgfffHe2DcWm6fy-n1dQ3s9hkoLo1cNZOWvtf6ViIPqHsR90TmQV</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Xiao, Ming</creator><creator>Wang, Boyan</creator><creator>Liu, Jingcun</creator><creator>Zhang, Ruizhe</creator><creator>Zhang, Zichen</creator><creator>Ding, Chao</creator><creator>Lu, Shengchang</creator><creator>Sasaki, Kohei</creator><creator>Lu, Guo-Quan</creator><creator>Buttay, Cyril</creator><creator>Zhang, Yuhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9072-6371</orcidid><orcidid>https://orcid.org/0000-0002-6937-7653</orcidid><orcidid>https://orcid.org/0000-0002-6155-1450</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0001-7140-5804</orcidid><orcidid>https://orcid.org/0000-0003-0052-5408</orcidid><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid></search><sort><creationdate>20210801</creationdate><title>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</title><author>Xiao, Ming ; Wang, Boyan ; Liu, Jingcun ; Zhang, Ruizhe ; Zhang, Zichen ; Ding, Chao ; Lu, Shengchang ; Sasaki, Kohei ; Lu, Guo-Quan ; Buttay, Cyril ; Zhang, Yuhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-c1c02f646c2249d7b8f829ebda71669178c7f55d06c2a50c3c7da2b259baf7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cooling</topic><topic>Electric power</topic><topic>Electrical surges</topic><topic>Electronic devices</topic><topic>Electronic packaging thermal management</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Gallium</topic><topic><![CDATA[Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>)]]></topic><topic>Gallium oxides</topic><topic>Heating systems</topic><topic>package</topic><topic>Packaging</topic><topic>Ruggedness</topic><topic>Schottky diodes</topic><topic>simulation</topic><topic>surge current</topic><topic>Surges</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Thermal runaway</topic><topic>Thermal stability</topic><topic>Transient analysis</topic><topic>ultrawide bandgap (UWBG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Liu, Jingcun</creatorcontrib><creatorcontrib>Zhang, Ruizhe</creatorcontrib><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Buttay, Cyril</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Ming</au><au>Wang, Boyan</au><au>Liu, Jingcun</au><au>Zhang, Ruizhe</au><au>Zhang, Zichen</au><au>Ding, Chao</au><au>Lu, Shengchang</au><au>Sasaki, Kohei</au><au>Lu, Guo-Quan</au><au>Buttay, Cyril</au><au>Zhang, Yuhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>36</volume><issue>8</issue><spage>8565</spage><epage>8569</epage><pages>8565-8569</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3049966</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9072-6371</orcidid><orcidid>https://orcid.org/0000-0002-6937-7653</orcidid><orcidid>https://orcid.org/0000-0002-6155-1450</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0001-7140-5804</orcidid><orcidid>https://orcid.org/0000-0003-0052-5408</orcidid><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2021-08, Vol.36 (8), p.8565-8569
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2525838216
source IEEE Electronic Library (IEL)
subjects Cooling
Electric power
Electrical surges
Electronic devices
Electronic packaging thermal management
Electronics
Engineering Sciences
Gallium
Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>)
Gallium oxides
Heating systems
package
Packaging
Ruggedness
Schottky diodes
simulation
surge current
Surges
Temperature dependence
Thermal conductivity
Thermal management
Thermal runaway
Thermal stability
Transient analysis
ultrawide bandgap (UWBG)
title Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packaged%20Ga2O3%20Schottky%20Rectifiers%20With%20Over%2060-A%20Surge%20Current%20Capability&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Xiao,%20Ming&rft.date=2021-08-01&rft.volume=36&rft.issue=8&rft.spage=8565&rft.epage=8569&rft.pages=8565-8569&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3049966&rft_dat=%3Cproquest_RIE%3E2525838216%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525838216&rft_id=info:pmid/&rft_ieee_id=9316993&rfr_iscdi=true