Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability
Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2021-08, Vol.36 (8), p.8565-8569 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8569 |
---|---|
container_issue | 8 |
container_start_page | 8565 |
container_title | IEEE transactions on power electronics |
container_volume | 36 |
creator | Xiao, Ming Wang, Boyan Liu, Jingcun Zhang, Ruizhe Zhang, Zichen Ding, Chao Lu, Shengchang Sasaki, Kohei Lu, Guo-Quan Buttay, Cyril Zhang, Yuhao |
description | Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management. |
doi_str_mv | 10.1109/TPEL.2021.3049966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2525838216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316993</ieee_id><sourcerecordid>2525838216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-c1c02f646c2249d7b8f829ebda71669178c7f55d06c2a50c3c7da2b259baf7f23</originalsourceid><addsrcrecordid>eNo90FFLwzAUBeAgCs7pDxBfAj750JmbNGnyOMrclEKHm_hY0jTdss11pulg_97KxKcLh4_D4SJ0D2QEQNTzcj7JRpRQGDESKyXEBRqAiiEiQJJLNCBS8kgqxa7RTdtuCIGYExigt7k2W72yFZ5qmjO8MOsmhO0Jv1sTXO2sb_GnC2ucH63HgkRjvOj8yuK0897uA071QZdu58LpFl3Vetfau787RB8vk2U6i7J8-pqOs8hQLkNkwBBai1gYSmNVJaWsJVW2rHQCQihIpElqzivSA82JYSapNC0pV6Wuk5qyIXo69671rjh496X9qWi0K2bjrPjNCAMpOMARevt4tgfffHe2DcWm6fy-n1dQ3s9hkoLo1cNZOWvtf6ViIPqHsR90TmQV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525838216</pqid></control><display><type>article</type><title>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Ming ; Wang, Boyan ; Liu, Jingcun ; Zhang, Ruizhe ; Zhang, Zichen ; Ding, Chao ; Lu, Shengchang ; Sasaki, Kohei ; Lu, Guo-Quan ; Buttay, Cyril ; Zhang, Yuhao</creator><creatorcontrib>Xiao, Ming ; Wang, Boyan ; Liu, Jingcun ; Zhang, Ruizhe ; Zhang, Zichen ; Ding, Chao ; Lu, Shengchang ; Sasaki, Kohei ; Lu, Guo-Quan ; Buttay, Cyril ; Zhang, Yuhao</creatorcontrib><description>Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3049966</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[Cooling ; Electric power ; Electrical surges ; Electronic devices ; Electronic packaging thermal management ; Electronics ; Engineering Sciences ; Gallium ; Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>) ; Gallium oxides ; Heating systems ; package ; Packaging ; Ruggedness ; Schottky diodes ; simulation ; surge current ; Surges ; Temperature dependence ; Thermal conductivity ; Thermal management ; Thermal runaway ; Thermal stability ; Transient analysis ; ultrawide bandgap (UWBG)]]></subject><ispartof>IEEE transactions on power electronics, 2021-08, Vol.36 (8), p.8565-8569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-c1c02f646c2249d7b8f829ebda71669178c7f55d06c2a50c3c7da2b259baf7f23</citedby><orcidid>0000-0001-9072-6371 ; 0000-0002-6937-7653 ; 0000-0002-6155-1450 ; 0000-0001-9986-835X ; 0000-0003-3079-8589 ; 0000-0001-6350-4861 ; 0000-0002-8923-7703 ; 0000-0001-7140-5804 ; 0000-0003-0052-5408 ; 0000-0001-7639-274X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03186511$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Liu, Jingcun</creatorcontrib><creatorcontrib>Zhang, Ruizhe</creatorcontrib><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Buttay, Cyril</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><title>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.</description><subject>Cooling</subject><subject>Electric power</subject><subject>Electrical surges</subject><subject>Electronic devices</subject><subject>Electronic packaging thermal management</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Gallium</subject><subject><![CDATA[Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>)]]></subject><subject>Gallium oxides</subject><subject>Heating systems</subject><subject>package</subject><subject>Packaging</subject><subject>Ruggedness</subject><subject>Schottky diodes</subject><subject>simulation</subject><subject>surge current</subject><subject>Surges</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Thermal runaway</subject><subject>Thermal stability</subject><subject>Transient analysis</subject><subject>ultrawide bandgap (UWBG)</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo90FFLwzAUBeAgCs7pDxBfAj750JmbNGnyOMrclEKHm_hY0jTdss11pulg_97KxKcLh4_D4SJ0D2QEQNTzcj7JRpRQGDESKyXEBRqAiiEiQJJLNCBS8kgqxa7RTdtuCIGYExigt7k2W72yFZ5qmjO8MOsmhO0Jv1sTXO2sb_GnC2ucH63HgkRjvOj8yuK0897uA071QZdu58LpFl3Vetfau787RB8vk2U6i7J8-pqOs8hQLkNkwBBai1gYSmNVJaWsJVW2rHQCQihIpElqzivSA82JYSapNC0pV6Wuk5qyIXo69671rjh496X9qWi0K2bjrPjNCAMpOMARevt4tgfffHe2DcWm6fy-n1dQ3s9hkoLo1cNZOWvtf6ViIPqHsR90TmQV</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Xiao, Ming</creator><creator>Wang, Boyan</creator><creator>Liu, Jingcun</creator><creator>Zhang, Ruizhe</creator><creator>Zhang, Zichen</creator><creator>Ding, Chao</creator><creator>Lu, Shengchang</creator><creator>Sasaki, Kohei</creator><creator>Lu, Guo-Quan</creator><creator>Buttay, Cyril</creator><creator>Zhang, Yuhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9072-6371</orcidid><orcidid>https://orcid.org/0000-0002-6937-7653</orcidid><orcidid>https://orcid.org/0000-0002-6155-1450</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0001-7140-5804</orcidid><orcidid>https://orcid.org/0000-0003-0052-5408</orcidid><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid></search><sort><creationdate>20210801</creationdate><title>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</title><author>Xiao, Ming ; Wang, Boyan ; Liu, Jingcun ; Zhang, Ruizhe ; Zhang, Zichen ; Ding, Chao ; Lu, Shengchang ; Sasaki, Kohei ; Lu, Guo-Quan ; Buttay, Cyril ; Zhang, Yuhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-c1c02f646c2249d7b8f829ebda71669178c7f55d06c2a50c3c7da2b259baf7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cooling</topic><topic>Electric power</topic><topic>Electrical surges</topic><topic>Electronic devices</topic><topic>Electronic packaging thermal management</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Gallium</topic><topic><![CDATA[Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>)]]></topic><topic>Gallium oxides</topic><topic>Heating systems</topic><topic>package</topic><topic>Packaging</topic><topic>Ruggedness</topic><topic>Schottky diodes</topic><topic>simulation</topic><topic>surge current</topic><topic>Surges</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Thermal runaway</topic><topic>Thermal stability</topic><topic>Transient analysis</topic><topic>ultrawide bandgap (UWBG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Wang, Boyan</creatorcontrib><creatorcontrib>Liu, Jingcun</creatorcontrib><creatorcontrib>Zhang, Ruizhe</creatorcontrib><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><creatorcontrib>Lu, Shengchang</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><creatorcontrib>Buttay, Cyril</creatorcontrib><creatorcontrib>Zhang, Yuhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Ming</au><au>Wang, Boyan</au><au>Liu, Jingcun</au><au>Zhang, Ruizhe</au><au>Zhang, Zichen</au><au>Ding, Chao</au><au>Lu, Shengchang</au><au>Sasaki, Kohei</au><au>Lu, Guo-Quan</au><au>Buttay, Cyril</au><au>Zhang, Yuhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>36</volume><issue>8</issue><spage>8565</spage><epage>8569</epage><pages>8565-8569</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Ultrawide-bandgap gallium oxide (Ga 2 O 3 ) devices have recently emerged as promising candidates for power electronics; however, the low thermal conductivity ( k T ) of Ga 2 O 3 causes serious concerns about their electrothermal ruggedness. This letter presents the first experimental demonstrations of large-area Ga 2 O 3 Schottky barrier diodes (SBDs) packaged in the bottom-side-cooling and double-side-cooling configurations, and for the first time, characterizes the surge current capabilities of these packaged Ga 2 O 3 SBDs. Contrary to popular belief, Ga 2 O 3 SBDs with proper packaging show high surge current capabilities. The double-side-cooled Ga 2 O 3 SBDs with a 3 × 3-mm 2 Schottky contact area can sustain a peak surge current over 60 A, with a ratio between the peak surge current and the rated current superior to that of similarly-rated commercial SiC SBDs. The key enabling mechanisms for this high surge current are the small temperature dependence of on -resistance, which strongly reduces the thermal runaway, and the double-side-cooled packaging, in which the heat is extracted directly from the Schottky junction and does not need to go through the low- k T bulk Ga 2 O 3 chip. These results remove some crucial concerns regarding the electrothermal ruggedness of Ga 2 O 3 power devices and manifest the significance of their die-level thermal management.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3049966</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9072-6371</orcidid><orcidid>https://orcid.org/0000-0002-6937-7653</orcidid><orcidid>https://orcid.org/0000-0002-6155-1450</orcidid><orcidid>https://orcid.org/0000-0001-9986-835X</orcidid><orcidid>https://orcid.org/0000-0003-3079-8589</orcidid><orcidid>https://orcid.org/0000-0001-6350-4861</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0001-7140-5804</orcidid><orcidid>https://orcid.org/0000-0003-0052-5408</orcidid><orcidid>https://orcid.org/0000-0001-7639-274X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2021-08, Vol.36 (8), p.8565-8569 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2525838216 |
source | IEEE Electronic Library (IEL) |
subjects | Cooling Electric power Electrical surges Electronic devices Electronic packaging thermal management Electronics Engineering Sciences Gallium Gallium oxide (Ga<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _2</tex-math> </inline-formula> </named-content>O<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> _3</tex-math> </inline-formula> </named-content>) Gallium oxides Heating systems package Packaging Ruggedness Schottky diodes simulation surge current Surges Temperature dependence Thermal conductivity Thermal management Thermal runaway Thermal stability Transient analysis ultrawide bandgap (UWBG) |
title | Packaged Ga2O3 Schottky Rectifiers With Over 60-A Surge Current Capability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packaged%20Ga2O3%20Schottky%20Rectifiers%20With%20Over%2060-A%20Surge%20Current%20Capability&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Xiao,%20Ming&rft.date=2021-08-01&rft.volume=36&rft.issue=8&rft.spage=8565&rft.epage=8569&rft.pages=8565-8569&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3049966&rft_dat=%3Cproquest_RIE%3E2525838216%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525838216&rft_id=info:pmid/&rft_ieee_id=9316993&rfr_iscdi=true |