Recent progress of MOF-derived porous carbon materials for microwave absorption
Microwave absorbing materials (MAM) have attracted considerable attention over the years in stealth and information technologies. Metal-organic framework (MOF) with a unique microstructure and electronic state has become an attractive focus as self-sacrificing precursors of microwave absorbers. The...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-05, Vol.11 (27), p.16572-16591 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microwave absorbing materials (MAM) have attracted considerable attention over the years in stealth and information technologies. Metal-organic framework (MOF) with a unique microstructure and electronic state has become an attractive focus as self-sacrificing precursors of microwave absorbers. The MOF-derived porous carbon (PC) materials exhibit a high absorbing performance due to the stable three-dimensional structure and homogeneous distribution of metal particles. MOF-derived PC materials are promising for ideal MAM
via
tuning of the structure and composition, resulting in appropriate impedance matching and the synergistic effect between magnetic and dielectric loss. In this review, the MOF-derived PC materials and their basic absorption mechanisms (dielectric loss, magnetic loss and impedance matching) are introduced, as well as the characters of various MOF-derived PC materials. In addition, this review provides a comprehensive introduction and tabulates the recent progress based on the classification of the MOF-derived metallic state, such as pure PC (without reduced metals), mono-metal/PC, multi-metal/PC, metal oxides/PC and other derived PC composites. Finally, the challenges faced by MOF-derived PC materials are overviewed, and their further development is mentioned.
MOF-derived PC materials with unique characteristic have been widely concerned as microwave absorbers over the years. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/d1ra01880a |