Orbital Complexity in Intrinsic Magnetic Topological Insulators MnBi4Te7 and MnBi6Te10

Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi4Te7 and MnBi6Te10 , the n = 1 and 2 members of a modular ( Bi2Te3)n( MnBi2Te4) series, which have attracted recent interest as intrinsic magnetic topo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-04, Vol.126 (17), p.1
Hauptverfasser: Vidal, R C, Bentmann, H, Facio, J I, Heider, T, Kagerer, P, nari, C I, Peixoto, T R F, Figgemeier, T, Jung, S, Cacho, C, Büchner, B, van den Brink, J, Schneider, C M, Plucinski, L, Schwier, E F, Shimada, K, Richter, M, Isaeva, A, Reinert, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi4Te7 and MnBi6Te10 , the n = 1 and 2 members of a modular ( Bi2Te3)n( MnBi2Te4) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi2Te3-terminated surfaces but remains preserved for MnBi2Te4-terminated surfaces. Our results firmly establish the topologically nontrivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.126.176403