Application of Nonequilibrium Relaxation Scheme to Machine Learning for Detecting a Phase Transition

A great success in detecting the phase transition in a two-dimensional Ising model using a neural network prompts us to apply the idea of nonequilibrium relaxation to the detection. In fact, convolutional neural networks can afford to predict the transition point at an early learning stage. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Physical Society of Japan 2021-05, Vol.90 (5), p.55001
Hauptverfasser: Fuchizaki, Kazuhiro, Nakamura, Katsumi, Hiroi, Daiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A great success in detecting the phase transition in a two-dimensional Ising model using a neural network prompts us to apply the idea of nonequilibrium relaxation to the detection. In fact, convolutional neural networks can afford to predict the transition point at an early learning stage. We also mention the limitations of the machine learning approach.
ISSN:0031-9015
1347-4073
DOI:10.7566/JPSJ.90.055001