Predictive control of FlexRay vehicle-mounted network based on neural network

Aiming at the problem that the control performance and stability of the system can not guarantee the security and reliability of FlexRay network control system when the FlexRay vehicle network control system transmits data under heavy load. So FlexRay vehicle network prediction controller based on n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-05, Vol.1907 (1), p.12062
Hauptverfasser: Wang, Yi, Chen, Min, Ma, Jianjun, Zhang, Jigui, Fu, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the problem that the control performance and stability of the system can not guarantee the security and reliability of FlexRay network control system when the FlexRay vehicle network control system transmits data under heavy load. So FlexRay vehicle network prediction controller based on neural network is proposed. By predicting the current state of the vehicle, and the running status of the network at the next moment, it can adapt the dynamic workload of the vehicle network system in a way of adjusting the workload autonomously. The method uses a nonlinear neural network model to predict future model capacity. The controller calculates the control input, and by controlling the input, it optimize the performance of the network model in a certain period of time. According to the square result obtained by Matlab/Simulink, the neural network predictive control has good learning ability and self-adaptability, which can improve the performance of the FlexRay vehicle-mounted network control system.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1907/1/012062