Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver nanoparticles: catalysts for enhanced CO2 chemical conversion at atmospheric pressure

High catalytic activity and sufficient durability are two unavoidable key indices of an efficient heterogeneous catalyst for the direct carboxylation of terminal alkynes with CO2 conversion. Nitrogen-rich covalent triazine frameworks (CTFs) are promising substrates, while random distribution of some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2021-01, Vol.11 (9), p.3119-3127
Hauptverfasser: Liu, Jian, Zhang, Xiaoyi, Wen, Bingyan, Li, Yipei, Wu, Jingjing, Wang, Zhipeng, Wu, Ting, Zhao, Rusong, Yang, Shenghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High catalytic activity and sufficient durability are two unavoidable key indices of an efficient heterogeneous catalyst for the direct carboxylation of terminal alkynes with CO2 conversion. Nitrogen-rich covalent triazine frameworks (CTFs) are promising substrates, while random distribution of some residual –NH2 groups brings challenges to the controlled growth of catalytic species. Here, we adopt a pre-carbonization protocol, annealing below the carbonization temperature, to eliminate the random –NH2 groups in CTFs and meanwhile to promote polycondensation degree under the premise of maintaining the pore structure. Benefiting from the improved condensation and orderly N atoms, p-CTF-250, for which CTFs are annealed at 250 °C, exhibits improved CO2 adsorption capacity and the ability to control the growth of Ag NPs. Mono-dispersed Ag NPs are generated controllably and entrapped to form Ag@p-CTF-250 catalysts. These Ag@p-CTF-250 catalysts were employed in the direct carboxylation of various terminal alkynes with CO2 under mild conditions (50 °C, 1 atm) and showed excellent catalytic activity. In addition, these catalysts have robust recyclability and can be used for at least 5 catalytic runs while retaining yield above 90%. CO2 conversion proceeds well under the synergistic effect between the high CO2 capture capability and the uniform tiny Ag NPs in Ag@p-CTF-250 “nanoreactors”. The results represent an efficient strategy for controlling the growth of metallic nanoparticles in porous organic polymer substrates containing disordered heteroatoms.
ISSN:2044-4753
2044-4761
DOI:10.1039/d0cy02473b