Reconfiguring Independent Sets on Interval Graphs

We study reconfiguration of independent sets in interval graphs under the token sliding rule. We show that if two independent sets of size \(k\) are reconfigurable in an \(n\)-vertex interval graph, then there is a reconfiguration sequence of length \(\mathcal{O}(k\cdot n^2)\). We also provide a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Briański, Marcin, Felsner, Stefan, Hodor, Jędrzej, Micek, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study reconfiguration of independent sets in interval graphs under the token sliding rule. We show that if two independent sets of size \(k\) are reconfigurable in an \(n\)-vertex interval graph, then there is a reconfiguration sequence of length \(\mathcal{O}(k\cdot n^2)\). We also provide a construction in which the shortest reconfiguration sequence is of length \(\Omega(k^2\cdot n)\). As a counterpart to these results, we also establish that \(\textsf{Independent Set Reconfiguration}\) is PSPACE-hard on incomparability graphs, of which interval graphs are a special case.
ISSN:2331-8422