Research on Construction Methods for Ultralarge Y-Shaped Tunnel Sections
Many problems are encountered in the construction of bifurcated tunnels due the abrupt change in section, small clear distance, and large section. Progress in the direction of tunnel construction is limited by the large-span section; therefore, a special method of construction that involves construc...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many problems are encountered in the construction of bifurcated tunnels due the abrupt change in section, small clear distance, and large section. Progress in the direction of tunnel construction is limited by the large-span section; therefore, a special method of construction that involves constructing a guiding tunnel first followed by reverse excavation was adopted to construct the large-span bifurcation section of the Liantang tunnel of Shenzhen Eastern Transit Expressway in China. The stability criterion of the surrounding rock of the middle wall in the section of multiple arch and small clear distance is studied by theoretical analysis, and the internal stress and corresponding ultimate strength of the middle wall under different buried depths and widths of the middle wall are calculated by the stability criterion. In this study, 3D finite-difference software was used to simulate the excavation process under forward and reverse excavation conditions. The results show that the displacement field and internal force field distribution are similar for both excavation methods, and the tunneling first and reverse excavation construction method is safe and reliable. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/9969208 |