Lorentzian non-stationary dynamical systems
In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distanc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Molaei, MohammadReza Khajoei, Najmeh |
description | In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distance function created by a unique torsion-free semi-Riemannian connection. We present three examples of LA-families. Also, we define Lorentzian shadowing property of type I and II and prove some results related to this property. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2522979587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522979587</sourcerecordid><originalsourceid>FETCH-proquest_journals_25229795873</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9skvSs0rqcpMzFPIy8_TLS5JLMnMz0ssqlRIqcxLzM1MTsxRKK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjUyMjS3NLUwtzY-JUAQCxSTI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522979587</pqid></control><display><type>article</type><title>Lorentzian non-stationary dynamical systems</title><source>Free E- Journals</source><creator>Molaei, MohammadReza ; Khajoei, Najmeh</creator><creatorcontrib>Molaei, MohammadReza ; Khajoei, Najmeh</creatorcontrib><description>In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distance function created by a unique torsion-free semi-Riemannian connection. We present three examples of LA-families. Also, we define Lorentzian shadowing property of type I and II and prove some results related to this property.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds (mathematics) ; Splitting</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Molaei, MohammadReza</creatorcontrib><creatorcontrib>Khajoei, Najmeh</creatorcontrib><title>Lorentzian non-stationary dynamical systems</title><title>arXiv.org</title><description>In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distance function created by a unique torsion-free semi-Riemannian connection. We present three examples of LA-families. Also, we define Lorentzian shadowing property of type I and II and prove some results related to this property.</description><subject>Manifolds (mathematics)</subject><subject>Splitting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9skvSs0rqcpMzFPIy8_TLS5JLMnMz0ssqlRIqcxLzM1MTsxRKK4sLknNLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjUyMjS3NLUwtzY-JUAQCxSTI2</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Molaei, MohammadReza</creator><creator>Khajoei, Najmeh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210506</creationdate><title>Lorentzian non-stationary dynamical systems</title><author>Molaei, MohammadReza ; Khajoei, Najmeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25229795873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Manifolds (mathematics)</topic><topic>Splitting</topic><toplevel>online_resources</toplevel><creatorcontrib>Molaei, MohammadReza</creatorcontrib><creatorcontrib>Khajoei, Najmeh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molaei, MohammadReza</au><au>Khajoei, Najmeh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lorentzian non-stationary dynamical systems</atitle><jtitle>arXiv.org</jtitle><date>2021-05-06</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distance function created by a unique torsion-free semi-Riemannian connection. We present three examples of LA-families. Also, we define Lorentzian shadowing property of type I and II and prove some results related to this property.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2522979587 |
source | Free E- Journals |
subjects | Manifolds (mathematics) Splitting |
title | Lorentzian non-stationary dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lorentzian%20non-stationary%20dynamical%20systems&rft.jtitle=arXiv.org&rft.au=Molaei,%20MohammadReza&rft.date=2021-05-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2522979587%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522979587&rft_id=info:pmid/&rfr_iscdi=true |