Lorentzian non-stationary dynamical systems
In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distanc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distance function created by a unique torsion-free semi-Riemannian connection. We present three examples of LA-families. Also, we define Lorentzian shadowing property of type I and II and prove some results related to this property. |
---|---|
ISSN: | 2331-8422 |