Lorentzian non-stationary dynamical systems

In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Molaei, MohammadReza, Khajoei, Najmeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a Lorentzian Anosov family (LAfamily) up to a sequence of distributions of null vectors. We prove for each p Mi, where Mi is a Lorentzian manifold for i Z the tangent space Mi at p has a unique splitting and this splitting varies continuously on a sequence via the distance function created by a unique torsion-free semi-Riemannian connection. We present three examples of LA-families. Also, we define Lorentzian shadowing property of type I and II and prove some results related to this property.
ISSN:2331-8422