Existence and Nonexistence of Solution for a Class of Quasilinear Schrödinger Equations with Critical Growth
In this work, we study the existence and nonexistence of solution for the following class of quasilinear Schrödinger equations: − div ( g 2 ( u ) ∇ u ) + g ( u ) g ′ ( u ) | ∇ u | 2 + V ( x ) u = f ( x , u ) + h ( x ) g ( u ) in R N , where N ≥ 3 , g : R → R + is a continuously differentiable functi...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2021-06, Vol.173 (1), Article 6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the existence and nonexistence of solution for the following class of quasilinear Schrödinger equations:
−
div
(
g
2
(
u
)
∇
u
)
+
g
(
u
)
g
′
(
u
)
|
∇
u
|
2
+
V
(
x
)
u
=
f
(
x
,
u
)
+
h
(
x
)
g
(
u
)
in
R
N
,
where
N
≥
3
,
g
:
R
→
R
+
is a continuously differentiable function,
V
(
x
)
is a potential that can change sign, the function
h
(
x
)
belongs to
L
2
N
/
(
N
+
2
)
(
R
N
)
and the nonlinearity
f
(
x
,
s
)
is possibly discontinuous and may exhibit critical growth. In order to obtain the nonexistence result, we deduce a Pohozaev identity and the existence of solution is proved by means of a fixed point theorem. |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-021-00412-7 |