The main eigenvalues of signed graphs
A signed graph Gσ is an ordered pair (V(G),E(G)), where V(G) and E(G) are the set of vertices and edges of G, respectively, along with a map σ that signs every edge of G with +1 or −1. An eigenvalue of the associated adjacency matrix of Gσ, denoted by A(Gσ), is a main eigenvalue if the corresponding...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-04, Vol.614, p.270-280 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A signed graph Gσ is an ordered pair (V(G),E(G)), where V(G) and E(G) are the set of vertices and edges of G, respectively, along with a map σ that signs every edge of G with +1 or −1. An eigenvalue of the associated adjacency matrix of Gσ, denoted by A(Gσ), is a main eigenvalue if the corresponding eigenspace has a non-orthogonal eigenvector to the all-one vector j. We conjectured that for every graph G≠K2,K4\{e}, there is a switching σ such that all eigenvalues of Gσ are main. We show that this conjecture holds for every Cayley graphs, distance-regular graphs, vertex and edge-transitive graphs as well as double stars and paths. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2020.04.029 |