Generalized Ramanujan conjecture over general imaginary quadratic fields
The new bound toward the generalized Ramanujan conjecture for GL n (A Q )$\textup {GL}_n({\bf A}_{\bf Q})$ is given by Kim–Sarnak [4]. We generalize it to that for GL n (A F )$\textup {GL}_n({\bf A}_{F})$ with F$F$ being an imaginary quadratic field. Applying the obtained bound to the automorphic re...
Gespeichert in:
Veröffentlicht in: | Forum mathematicum 2012-01, Vol.24 (1), p.85-98 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The new bound toward the generalized Ramanujan conjecture for GL n (A Q )$\textup {GL}_n({\bf A}_{\bf Q})$ is given by Kim–Sarnak [4]. We generalize it to that for GL n (A F )$\textup {GL}_n({\bf A}_{F})$ with F$F$ being an imaginary quadratic field. Applying the obtained bound to the automorphic representation of GL 5 $\textup {GL}_5$ gives the following estimate for the first positive eigenvalue of the Laplacian on L 2 ( 3 )$L^2(\Gamma \backslash {\mathbb {H}}^3)$, where $\Gamma $ is any congruence subgroups of SL 2 ( F )$\textup {SL}_2({\mathcal {O}}_F)$ with F ${\mathcal {O}}_F$ the ring of integers of F$F$: 1 ()0.952$\lambda _1(\Gamma ) \ge 0.952\cdots $. |
---|---|
ISSN: | 0933-7741 1435-5337 |
DOI: | 10.1515/form.2011.050 |