Generalized Ramanujan conjecture over general imaginary quadratic fields

The new bound toward the generalized Ramanujan conjecture for GL n (A Q )$\textup {GL}_n({\bf A}_{\bf Q})$ is given by Kim–Sarnak [4]. We generalize it to that for GL n (A F )$\textup {GL}_n({\bf A}_{F})$ with F$F$ being an imaginary quadratic field. Applying the obtained bound to the automorphic re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum mathematicum 2012-01, Vol.24 (1), p.85-98
1. Verfasser: Nakasuji, Maki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The new bound toward the generalized Ramanujan conjecture for GL n (A Q )$\textup {GL}_n({\bf A}_{\bf Q})$ is given by Kim–Sarnak [4]. We generalize it to that for GL n (A F )$\textup {GL}_n({\bf A}_{F})$ with F$F$ being an imaginary quadratic field. Applying the obtained bound to the automorphic representation of GL 5 $\textup {GL}_5$ gives the following estimate for the first positive eigenvalue of the Laplacian on L 2 ( 3 )$L^2(\Gamma \backslash {\mathbb {H}}^3)$, where $\Gamma $ is any congruence subgroups of SL 2 ( F )$\textup {SL}_2({\mathcal {O}}_F)$ with F ${\mathcal {O}}_F$ the ring of integers of F$F$: 1 ()0.952$\lambda _1(\Gamma ) \ge 0.952\cdots $.
ISSN:0933-7741
1435-5337
DOI:10.1515/form.2011.050