Parabolic-Like Wavelet Transforms and Relevant Reproducing Formulas
We introduce new anisotropic wavelet-type transforms generated by two components: a wavelet measure (or a wavelet function) and a kernel function that naturally generalizes the Gauss and Poisson kernels. The analogues of Calderon’s reproducing formula are established in the framework of the L p ( R...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2021-06, Vol.27 (3), Article 44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce new anisotropic wavelet-type transforms generated by two components: a wavelet measure (or a wavelet function) and a kernel function that naturally generalizes the Gauss and Poisson kernels. The analogues of Calderon’s reproducing formula are established in the framework of the
L
p
(
R
n
+
1
)
-theory. These wavelet-type transforms have close connection with a significant generalization of the classical parabolic-Riesz and parabolic-Bessel potentials and can be used to find explicit inversion formulas for the generalized parabolic-type potentials. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-021-09846-x |