Parabolic-Like Wavelet Transforms and Relevant Reproducing Formulas

We introduce new anisotropic wavelet-type transforms generated by two components: a wavelet measure (or a wavelet function) and a kernel function that naturally generalizes the Gauss and Poisson kernels. The analogues of Calderon’s reproducing formula are established in the framework of the L p ( R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2021-06, Vol.27 (3), Article 44
Hauptverfasser: Aliev, Ilham A., Sekin, Cagla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce new anisotropic wavelet-type transforms generated by two components: a wavelet measure (or a wavelet function) and a kernel function that naturally generalizes the Gauss and Poisson kernels. The analogues of Calderon’s reproducing formula are established in the framework of the L p ( R n + 1 ) -theory. These wavelet-type transforms have close connection with a significant generalization of the classical parabolic-Riesz and parabolic-Bessel potentials and can be used to find explicit inversion formulas for the generalized parabolic-type potentials.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-021-09846-x