Rolling Bearing Fault Diagnosis Based on CEEMDAN and Refined Composite Multiscale Fuzzy Entropy
Considering the nonlinear and nonstationary characteristics of rolling bearing vibration signals, we propose a rolling bearing fault diagnosis method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), refined composite multiscale fuzzy entropy (RCMFE), Laplace sco...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering the nonlinear and nonstationary characteristics of rolling bearing vibration signals, we propose a rolling bearing fault diagnosis method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), refined composite multiscale fuzzy entropy (RCMFE), Laplace score (LS), and the particle swarm optimization-probabilistic neural network (PSO-PNN). First, the method employs CEEMDAN to decompose the vibration signal and select the intrinsic mode functions (IMFs) containing the primary fault information via the frequency-domain correlation coefficient method. Then, it uses RCMFE to extract the characteristic information from the selected IMF. In addition, it uses LS to select and construct low-dimensional sensitive feature vectors, which are incorporated into the PSO-PNN model for diagnostic analysis to realize the state recognition of rolling bearing. Finally, the effectiveness of the method is verified by the analysis of the experimental data. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2021.3072138 |