Adjoint EM Sensitivity Analysis for Fast Frequency Sweep Using Matrix Padé via Lanczos Technique Based on Finite-Element Method

Sensitivity analysis is important for electromagnetic (EM)-based design. The existing adjoint EM sensitivity analysis methods have to solve large systems of EM equations repetitively for different frequencies. This article addresses this situation and proposes to speed up the EM sensitivity analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2021-05, Vol.69 (5), p.2413-2428
Hauptverfasser: Feng, Feng, Zhang, Jianan, Jin, Jing, Zhang, Wei, Zhao, Zhihao, Zhang, Qi-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2428
container_issue 5
container_start_page 2413
container_title IEEE transactions on microwave theory and techniques
container_volume 69
creator Feng, Feng
Zhang, Jianan
Jin, Jing
Zhang, Wei
Zhao, Zhihao
Zhang, Qi-Jun
description Sensitivity analysis is important for electromagnetic (EM)-based design. The existing adjoint EM sensitivity analysis methods have to solve large systems of EM equations repetitively for different frequencies. This article addresses this situation and proposes to speed up the EM sensitivity analysis over a frequency range by solving EM equations at only a single frequency. A new adjoint EM sensitivity analysis algorithm for the fast frequency sweep using the matrix Padé via Lanczos (MPVL) technique based on the finite-element method (FEM) is proposed in this article. MPVL is incorporated to relate the information of one frequency to the information of multiple frequencies. A large system of EM equations is then solved at a single frequency to predict the sensitivity information for the entire frequency band. Adjoint formulations are further derived to avoid the effect of the number of design variables. The adjoint EM sensitivity analysis using the proposed technique can obtain the same accuracy as the existing techniques while taking less time by avoiding repetitively solving large systems of EM equations for different frequencies and different design variables. The proposed technique is demonstrated by three EM examples of microwave components.
doi_str_mv 10.1109/TMTT.2021.3061566
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2522217514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9374678</ieee_id><sourcerecordid>2522217514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-25b11bab58b3ee780d8953f237669362c5da7fe7bc09328ebd9164941a2f9e663</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWC8PIG4CrqfmMrktq7QqtCh0uh4yM2c0pWZqEi915ev4HL6YUyquDge-_1w-hM4oGVJKzGUxK4ohI4wOOZFUSLmHBlQIlRmpyD4aEEJ1ZnJNDtFRjMu-zQXRA_Q1apad8wmPZ3gOPrrk3lza4JG3q010EbddwBMbE54EeHkFX2_w_B1gjRfR-Uc8sym4D_xgm59v_OYsnlpff3YRF1A_edcn8JWN0ODO44nzLkE2XsEz9BtnkJ665gQdtHYV4fSvHqPFZFxc32bT-5u769E0qxnRKWOiorSyldAVB1CaNNoI3jKupDRcslo0VrWgqpoYzjRUjaEyNzm1rDUgJT9GF7u569D1V8VULrvX0H8ZSyYYY1QJmvcU3VF16GIM0Jbr4J5t2JSUlFvR5VZ0uRVd_onuM-e7jAOAf95wlUul-S_t7XrB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522217514</pqid></control><display><type>article</type><title>Adjoint EM Sensitivity Analysis for Fast Frequency Sweep Using Matrix Padé via Lanczos Technique Based on Finite-Element Method</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Feng ; Zhang, Jianan ; Jin, Jing ; Zhang, Wei ; Zhao, Zhihao ; Zhang, Qi-Jun</creator><creatorcontrib>Feng, Feng ; Zhang, Jianan ; Jin, Jing ; Zhang, Wei ; Zhao, Zhihao ; Zhang, Qi-Jun</creatorcontrib><description>Sensitivity analysis is important for electromagnetic (EM)-based design. The existing adjoint EM sensitivity analysis methods have to solve large systems of EM equations repetitively for different frequencies. This article addresses this situation and proposes to speed up the EM sensitivity analysis over a frequency range by solving EM equations at only a single frequency. A new adjoint EM sensitivity analysis algorithm for the fast frequency sweep using the matrix Padé via Lanczos (MPVL) technique based on the finite-element method (FEM) is proposed in this article. MPVL is incorporated to relate the information of one frequency to the information of multiple frequencies. A large system of EM equations is then solved at a single frequency to predict the sensitivity information for the entire frequency band. Adjoint formulations are further derived to avoid the effect of the number of design variables. The adjoint EM sensitivity analysis using the proposed technique can obtain the same accuracy as the existing techniques while taking less time by avoiding repetitively solving large systems of EM equations for different frequencies and different design variables. The proposed technique is demonstrated by three EM examples of microwave components.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3061566</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adjoint sensitivity analysis ; Algorithms ; Analytical models ; Design analysis ; electromagnetic (EM) design ; fast frequency sweep ; Finite element analysis ; Finite element method ; finite-element method (FEM) ; Frequencies ; Frequency ranges ; Mathematical analysis ; Mathematical model ; matrix Padé via Lanczos (MPVL) ; Microwave theory and techniques ; Scattering parameters ; Sensitivity analysis ; Time-frequency analysis</subject><ispartof>IEEE transactions on microwave theory and techniques, 2021-05, Vol.69 (5), p.2413-2428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-25b11bab58b3ee780d8953f237669362c5da7fe7bc09328ebd9164941a2f9e663</citedby><cites>FETCH-LOGICAL-c208t-25b11bab58b3ee780d8953f237669362c5da7fe7bc09328ebd9164941a2f9e663</cites><orcidid>0000-0002-9279-309X ; 0000-0001-7337-4108 ; 0000-0001-7852-5331 ; 0000-0002-3569-8782 ; 0000-0002-8638-7837 ; 0000-0002-3536-5777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9374678$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9374678$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Feng</creatorcontrib><creatorcontrib>Zhang, Jianan</creatorcontrib><creatorcontrib>Jin, Jing</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhao, Zhihao</creatorcontrib><creatorcontrib>Zhang, Qi-Jun</creatorcontrib><title>Adjoint EM Sensitivity Analysis for Fast Frequency Sweep Using Matrix Padé via Lanczos Technique Based on Finite-Element Method</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Sensitivity analysis is important for electromagnetic (EM)-based design. The existing adjoint EM sensitivity analysis methods have to solve large systems of EM equations repetitively for different frequencies. This article addresses this situation and proposes to speed up the EM sensitivity analysis over a frequency range by solving EM equations at only a single frequency. A new adjoint EM sensitivity analysis algorithm for the fast frequency sweep using the matrix Padé via Lanczos (MPVL) technique based on the finite-element method (FEM) is proposed in this article. MPVL is incorporated to relate the information of one frequency to the information of multiple frequencies. A large system of EM equations is then solved at a single frequency to predict the sensitivity information for the entire frequency band. Adjoint formulations are further derived to avoid the effect of the number of design variables. The adjoint EM sensitivity analysis using the proposed technique can obtain the same accuracy as the existing techniques while taking less time by avoiding repetitively solving large systems of EM equations for different frequencies and different design variables. The proposed technique is demonstrated by three EM examples of microwave components.</description><subject>Adjoint sensitivity analysis</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Design analysis</subject><subject>electromagnetic (EM) design</subject><subject>fast frequency sweep</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>finite-element method (FEM)</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>matrix Padé via Lanczos (MPVL)</subject><subject>Microwave theory and techniques</subject><subject>Scattering parameters</subject><subject>Sensitivity analysis</subject><subject>Time-frequency analysis</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhoMoWC8PIG4CrqfmMrktq7QqtCh0uh4yM2c0pWZqEi915ev4HL6YUyquDge-_1w-hM4oGVJKzGUxK4ohI4wOOZFUSLmHBlQIlRmpyD4aEEJ1ZnJNDtFRjMu-zQXRA_Q1apad8wmPZ3gOPrrk3lza4JG3q010EbddwBMbE54EeHkFX2_w_B1gjRfR-Uc8sym4D_xgm59v_OYsnlpff3YRF1A_edcn8JWN0ODO44nzLkE2XsEz9BtnkJ665gQdtHYV4fSvHqPFZFxc32bT-5u769E0qxnRKWOiorSyldAVB1CaNNoI3jKupDRcslo0VrWgqpoYzjRUjaEyNzm1rDUgJT9GF7u569D1V8VULrvX0H8ZSyYYY1QJmvcU3VF16GIM0Jbr4J5t2JSUlFvR5VZ0uRVd_onuM-e7jAOAf95wlUul-S_t7XrB</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Feng, Feng</creator><creator>Zhang, Jianan</creator><creator>Jin, Jing</creator><creator>Zhang, Wei</creator><creator>Zhao, Zhihao</creator><creator>Zhang, Qi-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9279-309X</orcidid><orcidid>https://orcid.org/0000-0001-7337-4108</orcidid><orcidid>https://orcid.org/0000-0001-7852-5331</orcidid><orcidid>https://orcid.org/0000-0002-3569-8782</orcidid><orcidid>https://orcid.org/0000-0002-8638-7837</orcidid><orcidid>https://orcid.org/0000-0002-3536-5777</orcidid></search><sort><creationdate>20210501</creationdate><title>Adjoint EM Sensitivity Analysis for Fast Frequency Sweep Using Matrix Padé via Lanczos Technique Based on Finite-Element Method</title><author>Feng, Feng ; Zhang, Jianan ; Jin, Jing ; Zhang, Wei ; Zhao, Zhihao ; Zhang, Qi-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-25b11bab58b3ee780d8953f237669362c5da7fe7bc09328ebd9164941a2f9e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adjoint sensitivity analysis</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Design analysis</topic><topic>electromagnetic (EM) design</topic><topic>fast frequency sweep</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>finite-element method (FEM)</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>matrix Padé via Lanczos (MPVL)</topic><topic>Microwave theory and techniques</topic><topic>Scattering parameters</topic><topic>Sensitivity analysis</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Feng</creatorcontrib><creatorcontrib>Zhang, Jianan</creatorcontrib><creatorcontrib>Jin, Jing</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhao, Zhihao</creatorcontrib><creatorcontrib>Zhang, Qi-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Feng</au><au>Zhang, Jianan</au><au>Jin, Jing</au><au>Zhang, Wei</au><au>Zhao, Zhihao</au><au>Zhang, Qi-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint EM Sensitivity Analysis for Fast Frequency Sweep Using Matrix Padé via Lanczos Technique Based on Finite-Element Method</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>69</volume><issue>5</issue><spage>2413</spage><epage>2428</epage><pages>2413-2428</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Sensitivity analysis is important for electromagnetic (EM)-based design. The existing adjoint EM sensitivity analysis methods have to solve large systems of EM equations repetitively for different frequencies. This article addresses this situation and proposes to speed up the EM sensitivity analysis over a frequency range by solving EM equations at only a single frequency. A new adjoint EM sensitivity analysis algorithm for the fast frequency sweep using the matrix Padé via Lanczos (MPVL) technique based on the finite-element method (FEM) is proposed in this article. MPVL is incorporated to relate the information of one frequency to the information of multiple frequencies. A large system of EM equations is then solved at a single frequency to predict the sensitivity information for the entire frequency band. Adjoint formulations are further derived to avoid the effect of the number of design variables. The adjoint EM sensitivity analysis using the proposed technique can obtain the same accuracy as the existing techniques while taking less time by avoiding repetitively solving large systems of EM equations for different frequencies and different design variables. The proposed technique is demonstrated by three EM examples of microwave components.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3061566</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9279-309X</orcidid><orcidid>https://orcid.org/0000-0001-7337-4108</orcidid><orcidid>https://orcid.org/0000-0001-7852-5331</orcidid><orcidid>https://orcid.org/0000-0002-3569-8782</orcidid><orcidid>https://orcid.org/0000-0002-8638-7837</orcidid><orcidid>https://orcid.org/0000-0002-3536-5777</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2021-05, Vol.69 (5), p.2413-2428
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_journals_2522217514
source IEEE Electronic Library (IEL)
subjects Adjoint sensitivity analysis
Algorithms
Analytical models
Design analysis
electromagnetic (EM) design
fast frequency sweep
Finite element analysis
Finite element method
finite-element method (FEM)
Frequencies
Frequency ranges
Mathematical analysis
Mathematical model
matrix Padé via Lanczos (MPVL)
Microwave theory and techniques
Scattering parameters
Sensitivity analysis
Time-frequency analysis
title Adjoint EM Sensitivity Analysis for Fast Frequency Sweep Using Matrix Padé via Lanczos Technique Based on Finite-Element Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint%20EM%20Sensitivity%20Analysis%20for%20Fast%20Frequency%20Sweep%20Using%20Matrix%20Pad%C3%A9%20via%20Lanczos%20Technique%20Based%20on%20Finite-Element%20Method&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Feng,%20Feng&rft.date=2021-05-01&rft.volume=69&rft.issue=5&rft.spage=2413&rft.epage=2428&rft.pages=2413-2428&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3061566&rft_dat=%3Cproquest_RIE%3E2522217514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522217514&rft_id=info:pmid/&rft_ieee_id=9374678&rfr_iscdi=true