Operation and Control of a Hybrid Coupled Interlinking Converter for Hybrid AC/Low Voltage DC Microgrids

The respective advantages of ac and dc microgrids lead to the blooming development of the hybrid ac/dc microgrid, which consists of ac and dc microgrid tied by an interlinking converter. A new structure of hybrid coupled interlinking converter (HCIC), which composed of a converter in series with a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-08, Vol.68 (8), p.7104-7114
Hauptverfasser: Wang, Lei, Fu, Xiaofan, Wong, Man-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The respective advantages of ac and dc microgrids lead to the blooming development of the hybrid ac/dc microgrid, which consists of ac and dc microgrid tied by an interlinking converter. A new structure of hybrid coupled interlinking converter (HCIC), which composed of a converter in series with a static VAR compensator (SVC), is proposed for hybrid ac and low voltage dc (LVdc) microgrids. Moreover, a new droop control method is correspondingly developed for the proposed HCIC. Its fundamental active and reactive power flow in the hybrid ac/dc microgrid is controlled by P-δ and Q-P-V droop control for converter part of the HCIC, and P-Q-α droop control is proposed for SVC part of the HCIC. Furthermore, a fast harmonic control is given based on a decoupled control strategy to improve the filtering characteristics of SVC part of the HCIC, suppress the harmonic power, and/or inject active power. Finally, simulation and experimental results are provided to verify that the proposed HCIC for hybrid ac/LVdc microgrids has the ability of good power flow control and power quality compensation, which not only meets the power flow requirements with low rating system, but also greatly promotes the development of more robust hybrid ac/dc microgrids.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2020.3001802