Parallel Variable-Triangular Iterative Methods in Krylov Subspaces

The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations with large sparse symmetric positive-definite matrices resulting from grid approximations of multidimensional problems. For preconditioning, generalized block algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (3), p.281-290
1. Verfasser: Il’in, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations with large sparse symmetric positive-definite matrices resulting from grid approximations of multidimensional problems. For preconditioning, generalized block algorithms of symmetric successive over-relaxation or incomplete factorization type with matching row sums are used. Preconditioners are based on variable-triangular matrix factors with multiple alternations in triangular structure. For three-dimensional grid algebraic systems, methods are based on nested factorizations, as well as on two-level iterative processes. Successive approximations in Krylov subspaces are computed by applying a family of conjugate direction algorithms with various orthogonality and variational properties, including preconditioned conjugate gradient, conjugate residual, and minimal error methods.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-021-05371-w