Parallel Variable-Triangular Iterative Methods in Krylov Subspaces
The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations with large sparse symmetric positive-definite matrices resulting from grid approximations of multidimensional problems. For preconditioning, generalized block algorithm...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-06, Vol.255 (3), p.281-290 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations with large sparse symmetric positive-definite matrices resulting from grid approximations of multidimensional problems. For preconditioning, generalized block algorithms of symmetric successive over-relaxation or incomplete factorization type with matching row sums are used. Preconditioners are based on variable-triangular matrix factors with multiple alternations in triangular structure. For three-dimensional grid algebraic systems, methods are based on nested factorizations, as well as on two-level iterative processes. Successive approximations in Krylov subspaces are computed by applying a family of conjugate direction algorithms with various orthogonality and variational properties, including preconditioned conjugate gradient, conjugate residual, and minimal error methods. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-021-05371-w |