The optimization of the control logic of a redundant six axis milling machine

The primary task of machine tools is simultaneously positioning and orienting the cutting tool with respect to the work piece. The mechanism must avoid positioning errors, and limit forces and torques required to the motors. A novel approach for combined design and control of manufacturing means is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2021-06, Vol.32 (5), p.1441-1453
Hauptverfasser: Caputi, Antonio, Russo, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary task of machine tools is simultaneously positioning and orienting the cutting tool with respect to the work piece. The mechanism must avoid positioning errors, and limit forces and torques required to the motors. A novel approach for combined design and control of manufacturing means is proposed in this work. The focus is on the optimization of the control logic of a redundant 6 axis milling machine, derived from the 5 axis milling machine by adding redundant degree of freedom to the work piece table. The new mechanism is able to fulfill a secondary task due to the introduction of redundancy. The proposed methodology sets as secondary task the minimization of the rotary motors torque, or the minimization of the norm of the positioning error. The control is based on the solution of a constrained optimization problem, where the constraints equations are the kinematic closure equations, and the objective function is the table motor torque or the positioning error of the tool tip. The implementation of this framework in the virtual machine model of the mechanism shows an improvement of the performances: actually, the introduction of a redundant axis allows the minimization of the torques and position errors.
ISSN:0956-5515
1572-8145
DOI:10.1007/s10845-020-01705-8