Modeling and Simulation of Solid Oxide Fuel Cell Based On Neural Network

In order to study the effects of hydrogen input molar flow, oxygen input molar flow, water vapor input molar flow and real-time temperature on the output voltage of solid oxide fuel cell (SOFC), this paper proposes a method to model SOFC using a BP neural network optimized by immunogenetic algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-04, Vol.1871 (1), p.12036
Hauptverfasser: Wang, Qianru, Wang, Caixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to study the effects of hydrogen input molar flow, oxygen input molar flow, water vapor input molar flow and real-time temperature on the output voltage of solid oxide fuel cell (SOFC), this paper proposes a method to model SOFC using a BP neural network optimized by immunogenetic algorithm (IA). MATLAB simulation results show that the SOFC model established in this paper can more accurately reflect the actual SOFC input and output characteristics. And the model has a high fit to the real data.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1871/1/012036