Browder's Theorem with General Parameter Space
Browder (1960) proved that for every continuous function \(F : X \times Y \to Y\), where \(X\) is the unit interval and \(Y\) is a nonempty, convex, and compact subset of \(\dR^n\), the set of fixed points of \(F\), defined by \(C_F := \{ (x,y) \in X \times Y \colon F(x,y)=y\}\) has a connected comp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Browder (1960) proved that for every continuous function \(F : X \times Y \to Y\), where \(X\) is the unit interval and \(Y\) is a nonempty, convex, and compact subset of \(\dR^n\), the set of fixed points of \(F\), defined by \(C_F := \{ (x,y) \in X \times Y \colon F(x,y)=y\}\) has a connected component whose projection to the first coordinate is \(X\). We extend this result to the case where \(X\) is a connected and compact Hausdorff space. |
---|---|
ISSN: | 2331-8422 |