Browder's Theorem with General Parameter Space

Browder (1960) proved that for every continuous function \(F : X \times Y \to Y\), where \(X\) is the unit interval and \(Y\) is a nonempty, convex, and compact subset of \(\dR^n\), the set of fixed points of \(F\), defined by \(C_F := \{ (x,y) \in X \times Y \colon F(x,y)=y\}\) has a connected comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Solan, Eilon, Omri Nisan Solan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Browder (1960) proved that for every continuous function \(F : X \times Y \to Y\), where \(X\) is the unit interval and \(Y\) is a nonempty, convex, and compact subset of \(\dR^n\), the set of fixed points of \(F\), defined by \(C_F := \{ (x,y) \in X \times Y \colon F(x,y)=y\}\) has a connected component whose projection to the first coordinate is \(X\). We extend this result to the case where \(X\) is a connected and compact Hausdorff space.
ISSN:2331-8422