Electrical conductivity of poly(hydroxybutyrate-Co-hydroxyvalerate)/graphene biocomposites produced via different solvent

Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is among the most promising polymers used in a variety of applications, owing to its low cost, biodegradability, and nontoxicity. However, PHBV is electrically insulating; hence, limits its use in biomedical applications. This study demonstrates a stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mahamud, S. N. S., Pisal, M. H. M., Koh, J. H., Jalil, J. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is among the most promising polymers used in a variety of applications, owing to its low cost, biodegradability, and nontoxicity. However, PHBV is electrically insulating; hence, limits its use in biomedical applications. This study demonstrates a straightforward and environment-friendly method to fabricate and modify the electrical conductivity of PHBV-based biocomposites by incorporating graphene (G) as conductive filler. PHBV/G bicomposite films were fabricated using acetic acid as an alternative to conventional solvents such as chloroform. The electrical conductivity of the biocomposite films with various loadings of graphene (0-5 wt.%) was investigated by a two-point probe. It was discovered that, PHBV/G biocomposites at 5 wt.% graphene loading possess the highest electrical conductivity irrespective of the type of solvents used. Meanwhile, acetic acid casted PHBV/G biocomposite films have a greater electrical conductivity compared to chloroform casted PHBV/G biocomposite films.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0044259