Phase transition for the volume of high‐dimensional random polytopes
The beta polytope Pn,dβ is the convex hull of n i.i.d. random points distributed in the unit ball of ℝd according to a density proportional to (1−‖x‖2)β if β>−1 (in particular, β=0 corresponds to the uniform distribution in the ball), or uniformly on the unit sphere if β=−1. We show that the expe...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2021-07, Vol.58 (4), p.648-663 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The beta polytope Pn,dβ is the convex hull of n i.i.d. random points distributed in the unit ball of ℝd according to a density proportional to (1−‖x‖2)β if β>−1 (in particular, β=0 corresponds to the uniform distribution in the ball), or uniformly on the unit sphere if β=−1. We show that the expected normalized volumes of high‐dimensional beta polytopes exhibit a phase transition and we describe its shape. We derive analogous results for the intrinsic volumes of beta polytopes and, when β=0, their number of vertices. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20986 |