Phase transition for the volume of high‐dimensional random polytopes

The beta polytope Pn,dβ is the convex hull of n i.i.d. random points distributed in the unit ball of ℝd according to a density proportional to (1−‖x‖2)β if β>−1 (in particular, β=0 corresponds to the uniform distribution in the ball), or uniformly on the unit sphere if β=−1. We show that the expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2021-07, Vol.58 (4), p.648-663
Hauptverfasser: Bonnet, Gilles, Kabluchko, Zakhar, Turchi, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The beta polytope Pn,dβ is the convex hull of n i.i.d. random points distributed in the unit ball of ℝd according to a density proportional to (1−‖x‖2)β if β>−1 (in particular, β=0 corresponds to the uniform distribution in the ball), or uniformly on the unit sphere if β=−1. We show that the expected normalized volumes of high‐dimensional beta polytopes exhibit a phase transition and we describe its shape. We derive analogous results for the intrinsic volumes of beta polytopes and, when β=0, their number of vertices.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20986