A partial inverse Sturm‐Liouville problem on an arbitrary graph

The Sturm‐Liouville operator with singular potentials of class W2−1 on a graph of arbitrary geometrical structure is considered. We study the partial inverse problem, which consists in the recovery of the potential on a boundary edge of the graph from a subspectrum under the assumption that the pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-05, Vol.44 (8), p.6896-6910
1. Verfasser: Bondarenko, Natalia P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Sturm‐Liouville operator with singular potentials of class W2−1 on a graph of arbitrary geometrical structure is considered. We study the partial inverse problem, which consists in the recovery of the potential on a boundary edge of the graph from a subspectrum under the assumption that the potentials on the other edges are known a priori. We obtain (i) the uniqueness theorem, (ii) a reconstruction algorithm, (iii) global solvability, and (iv) local solvability and stability for this inverse problem. Our method is based on reduction of the partial inverse problem on a graph to the Sturm‐Liouville problem on a finite interval with entire analytic functions in the boundary condition.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.7231