Infinite-Variate Extensions of Krawtchouk Polynomials and Zonal Spherical Functions over a Local Field

The multivariate Krawtchouk polynomials are orthogonal polynomials for the multinomial distribution, first defined by Griffiths in 1971. We construct infinite-variate extensions of them as complete orthogonal systems of specific weighted l2-spaces. We also give realizations of our infinite-variate e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Funkcialaj Ekvacioj 2021/04/15, Vol.64(1), pp.75-118
1. Verfasser: Kawamura, Koei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multivariate Krawtchouk polynomials are orthogonal polynomials for the multinomial distribution, first defined by Griffiths in 1971. We construct infinite-variate extensions of them as complete orthogonal systems of specific weighted l2-spaces. We also give realizations of our infinite-variate extensions as zonal spherical functions on groups over a non-Archimedean local field. Some typical properties of Krawtchouk polynomials like duality, orthogonality and completeness are thus shed light from the point of view of zonal spherical functions.
ISSN:0532-8721
DOI:10.1619/fesi.64.75