Infinite-Variate Extensions of Krawtchouk Polynomials and Zonal Spherical Functions over a Local Field
The multivariate Krawtchouk polynomials are orthogonal polynomials for the multinomial distribution, first defined by Griffiths in 1971. We construct infinite-variate extensions of them as complete orthogonal systems of specific weighted l2-spaces. We also give realizations of our infinite-variate e...
Gespeichert in:
Veröffentlicht in: | Funkcialaj Ekvacioj 2021/04/15, Vol.64(1), pp.75-118 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The multivariate Krawtchouk polynomials are orthogonal polynomials for the multinomial distribution, first defined by Griffiths in 1971. We construct infinite-variate extensions of them as complete orthogonal systems of specific weighted l2-spaces. We also give realizations of our infinite-variate extensions as zonal spherical functions on groups over a non-Archimedean local field. Some typical properties of Krawtchouk polynomials like duality, orthogonality and completeness are thus shed light from the point of view of zonal spherical functions. |
---|---|
ISSN: | 0532-8721 |
DOI: | 10.1619/fesi.64.75 |