Brewer’s grains with different pretreatments used as bio-adsorbents for the removal of Congo red dye from aqueous solution
Brewer’s grains (BG), a by-product of the beer industry, were first pretreated by sulfuric acid, sodium hydroxide, and white-rot fungus Coriolus versicolor for the preparation of bio-adsorbents BGPH, BGPOH, and BGPB, respectively. All bio-adsorbents were rich in hydroxyl groups and could adsorb Cong...
Gespeichert in:
Veröffentlicht in: | Bioresources 2020-08, Vol.15 (3), p.6928-6940 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brewer’s grains (BG), a by-product of the beer industry, were first pretreated by sulfuric acid, sodium hydroxide, and white-rot fungus Coriolus versicolor for the preparation of bio-adsorbents BGPH, BGPOH, and BGPB, respectively. All bio-adsorbents were rich in hydroxyl groups and could adsorb Congo red dye from aqueous solution, and BGPOH worked better than the others. The order of maximum equilibrium adsorption capacity of bio-adsorbents for Congo red was BGPOH > BGPH > BGPB. The Langmuir, Freundlich, and Temkin adsorption isotherm models all fit well with the experimental data. The negative Gibbs free energy change meant that the adsorption was spontaneous, and lower temperature was useful for the adsorption of Congo red onto the bio-adsorbents. The pseudo first-order and second-order kinetics models fit well with the experimental data, and the second-order kinetics model fit better, which indicated the adsorption was controlled by diffusion phenomena. Brewer’s grains with the three pretreatments could be used as efficient adsorbents for the treatment of dye wastewater. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.15.3.6928-6940 |