Characterization of poly-hydroxybutyrate/luffa fibers composite material

Luffa fibers were evaluated as a reinforcement material in poly-hydroxy-butyrate matrix composites. The treatments consisted of varying the incorporation percentage of mercerized and non-mercerized luffa fibers in a poly-hydroxybutyrate (PHB) matrix (5%, 10%, and 20% w/v). Composites made with PHB a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2020-08, Vol.15 (3), p.7159-7177
Hauptverfasser: Avecilla-Ramírez, Andrea Melina, López-Cuellar, Ma. del Rocío, Vergara-Porras, Berenice, Rodríguez-Hernández, Adriana I., Vázquez-Núñez, Edgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Luffa fibers were evaluated as a reinforcement material in poly-hydroxy-butyrate matrix composites. The treatments consisted of varying the incorporation percentage of mercerized and non-mercerized luffa fibers in a poly-hydroxybutyrate (PHB) matrix (5%, 10%, and 20% w/v). Composites made with PHB and reinforced with luffa fibers (treated and non-treated) were mechanically evaluated (tensile strength, Young’s modulus, and percentage of elongation at break), the surface morphology was described by using scanning electronic microscopy, and the degradability behavior of composites was obtained. According to the results, mechanical properties decreased when the percentage of fibers increased and no significant effects were observed when compared with mercerized fiber composites. Degradability tests demonstrated that the weight loss increased with increased fiber content in composites, independent of the applied pretreatments. Microscopy images exhibited that mercerization improved the fiber incorporation into the polymeric matrix, diminishing the “pull out” effect; the above-mentioned result was supported by using the Fourier-transform infrared spectroscopy technique, observing the reduction of lignin and hemicellulose peaks in mercerized fibers. Based on the composite mechanical performance and degradability behavior, it was concluded that this material could be used in the packaging sector as biodegradable secondary packaging material.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.15.3.7159-7177