Back stable Schubert calculus

We study the back stable Schubert calculus of the infinite flag variety. Our main results are: –a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; –a novel definition of double and triple Stanley symmetric functions; –a proof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2021-05, Vol.157 (5), p.883-962
Hauptverfasser: Lam, Thomas, Lee, Seung Jin, Shimozono, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the back stable Schubert calculus of the infinite flag variety. Our main results are: –a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; –a novel definition of double and triple Stanley symmetric functions; –a proof of the positivity of double Edelman–Greene coefficients generalizing the results of Edelman–Greene and Lascoux–Schützenberger; –the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman–Greene insertion algorithm; –the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; –equivariant Pieri rules for the homology of the infinite Grassmannian; –homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X21007028