Back stable Schubert calculus
We study the back stable Schubert calculus of the infinite flag variety. Our main results are: –a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; –a novel definition of double and triple Stanley symmetric functions; –a proof...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2021-05, Vol.157 (5), p.883-962 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the back stable Schubert calculus of the infinite flag variety. Our main results are:
–a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part;
–a novel definition of double and triple Stanley symmetric functions;
–a proof of the positivity of double Edelman–Greene coefficients generalizing the results of Edelman–Greene and Lascoux–Schützenberger;
–the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman–Greene insertion algorithm;
–the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case;
–equivariant Pieri rules for the homology of the infinite Grassmannian;
–homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X21007028 |